Chapter 3 Path Analysis

3.1 Syntax - R

library(lavaan); library(semPlot)

3.1.1 Use a sample covariance matrix an input

COV <- '
160
106 210
129 109 225 '
typeof(COV)
## [1] "character"
class(COV)
## [1] "character"
mr.cov <- getCov(COV, names = c("Y", "X1", "X2")) #create full covariance matrix
mr.cov
##      Y  X1  X2
## Y  160 106 129
## X1 106 210 109
## X2 129 109 225
typeof(mr.cov)
## [1] "double"
class(mr.cov)
## [1] "matrix" "array"

3.1.1.1 Specify and fit the regression model

mr.model <- ' Y ~ X1 + X2 '
mr.fit1 <- sem(mr.model, sample.cov = mr.cov, sample.nobs = 256)
summary(mr.fit1, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-8 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         3
##                                                       
##   Number of observations                           256
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               197.408
##   Degrees of freedom                                 2
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -913.665
##   Loglikelihood unrestricted model (H1)       -913.665
##                                                       
##   Akaike (AIC)                                1833.331
##   Bayesian (BIC)                              1843.966
##   Sample-size adjusted Bayesian (BIC)         1834.456
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Y ~                                                                   
##     X1                0.277    0.043    6.454    0.000    0.277    0.317
##     X2                0.439    0.041   10.603    0.000    0.439    0.521
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y                73.710    6.515   11.314    0.000   73.710    0.462

3.1.1.2 Mimic mplus results

mr.fit2 <- sem(mr.model, sample.cov = mr.cov, sample.nobs = 256, mimic = "Mplus")
summary(mr.fit2, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-8 ended normally after 11 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         4
##                                                       
##   Number of observations                           256
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               197.408
##   Degrees of freedom                                 2
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -913.665
##   Loglikelihood unrestricted model (H1)       -913.665
##                                                       
##   Akaike (AIC)                                1835.331
##   Bayesian (BIC)                              1849.512
##   Sample-size adjusted Bayesian (BIC)         1836.831
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Y ~                                                                   
##     X1                0.277    0.043    6.454    0.000    0.277    0.317
##     X2                0.439    0.041   10.603    0.000    0.439    0.521
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y                 0.000    0.537    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y                73.710    6.515   11.314    0.000   73.710    0.462

3.1.1.3 Plot the path diagram

semPlot::semPaths(mr.fit1)

3.1.2 Use sample correlation matrix and SDs as input

CORR <- '
1.000
.498   1.000
.738    .643   1.000
.649    .721    .823   1.000'
SDs <- c(13.76, 10.41, 15.00, 13.29)
pa.cov <- getCov(CORR)
pa.cov <- cor2cov(pa.cov, sds = SDs, names = c("X", "Y1", "Y2", "Y3"))
pa.model <- '
    Y1 ~ b*Y2
    Y2 ~ a*X
    Y3 ~ c*Y1 + d*Y2
    #indirect effects
    ad :=a*d
    abc :=a*b*c
    bc :=b*c
    #total effects
    XtoY3 := ad+abc
    Y2toY3 :=d+bc'
pa.fit <- sem(pa.model, sample.cov=pa.cov, sample.nobs = 116, mimic = "Mplus")
# pa.fit2 <- sem(pa.model, sample.cov=pa.cov, sample.nobs = 116)
# When mimic="Mplus", the number of free parameters is NOT consistent with Mplus output for this example. However, that is NOT always the case. 
summary(pa.fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-8 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##                                                       
##   Number of observations                           116
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 1.377
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.502
## 
## Model Test Baseline Model:
## 
##   Test statistic                               310.802
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.006
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1223.560
##   Loglikelihood unrestricted model (H1)      -1222.871
##                                                       
##   Akaike (AIC)                                2467.120
##   Bayesian (BIC)                              2494.656
##   Sample-size adjusted Bayesian (BIC)         2463.046
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.165
##   P-value RMSEA <= 0.05                          0.594
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Y1 ~                                                                  
##     Y2         (b)    0.446    0.049    9.042    0.000    0.446    0.643
##   Y2 ~                                                                  
##     X          (a)    0.805    0.068   11.779    0.000    0.805    0.738
##   Y3 ~                                                                  
##     Y1         (c)    0.417    0.079    5.291    0.000    0.417    0.327
##     Y2         (d)    0.543    0.055    9.913    0.000    0.543    0.613
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1                0.000    0.737    0.000    1.000    0.000    0.000
##    .Y2                0.000    0.936    0.000    1.000    0.000    0.000
##    .Y3                0.000    0.626    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1               63.015    8.274    7.616    0.000   63.015    0.587
##    .Y2              101.572   13.337    7.616    0.000  101.572    0.455
##    .Y3               45.517    5.977    7.616    0.000   45.517    0.260
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     ad                0.437    0.058    7.585    0.000    0.437    0.452
##     abc               0.150    0.035    4.258    0.000    0.150    0.155
##     bc                0.186    0.041    4.566    0.000    0.186    0.210
##     XtoY3             0.587    0.062    9.401    0.000    0.587    0.607
##     Y2toY3            0.729    0.047   15.604    0.000    0.729    0.823
#obtain model-implied (fitted) covariance matrix and mean vector
fitted(pa.fit)
## $cov
##    Y1      Y2      Y3      X      
## Y1 107.434                        
## Y2  99.539 223.060                
## Y3  98.890 162.651 175.101        
## X   67.387 151.010 110.113 187.705
## 
## $mean
## Y1 Y2 Y3  X 
##  0  0  0  0
#obtain unstandardized residuals of a fitted model
resid(pa.fit)
## $type
## [1] "raw"
## 
## $cov
##    Y1    Y2    Y3    X    
## Y1 0.000                  
## Y2 0.000 0.000            
## Y3 0.000 0.000 0.000      
## X  3.332 0.000 7.547 0.000
## 
## $mean
## Y1 Y2 Y3  X 
##  0  0  0  0
#obtain standardized residuals of a fitted model
resid(pa.fit, type="standardized")
## $type
## [1] "standardized"
## 
## $cov
##    Y1    Y2    Y3    X    
## Y1 0.000                  
## Y2 0.000 0.000            
## Y3 0.000 0.000 0.000      
## X  0.470 0.000 1.013 0.000
## 
## $mean
## Y1 Y2 Y3  X 
##  0  0  0  0
#obtain the estimated covariance matrix of parameter estimates
vcov(pa.fit) 
##        b       a       c       d       Y1~~Y1  Y2~~Y2  Y3~~Y3  Y1~1    Y2~1   
## b        0.002                                                                
## a        0.000   0.005                                                        
## c        0.000   0.000   0.006                                                
## d        0.000   0.000  -0.003   0.003                                        
## Y1~~Y1   0.000   0.000   0.000   0.000  68.465                                
## Y2~~Y2   0.000   0.000   0.000   0.000   0.000 177.877                        
## Y3~~Y3   0.000   0.000   0.000   0.000   0.000   0.000  35.721                
## Y1~1     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.543        
## Y2~1     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.876
## Y3~1     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000
##        Y3~1   
## b             
## a             
## c             
## d             
## Y1~~Y1        
## Y2~~Y2        
## Y3~~Y3        
## Y1~1          
## Y2~1          
## Y3~1     0.392

3.1.3 Path analysis model - Wheaton et al. (1977) example

lower <- '12.892,           
7.064, 9.237,       
7.417, 5.205, 12.585    
5.077, 5.091, 7.375, 10.036'
wheaton.cov <- getCov(lower, names = c("anomia67","powerless67", "anomia71", "powerless71"))
wheaton.model <- '
    anomia71 ~ anomia67 + powerless67
    powerless71 ~ anomia67 + powerless67 
    anomia67 ~~ powerless67
    anomia71 ~~ 0*powerless71'
wheaton.fit <- sem(wheaton.model, sample.cov = wheaton.cov, sample.nobs = 932, mimic = "Mplus")
# wheaton.fit2 <- sem(wheaton.model, sample.cov = wheaton.cov, sample.nobs = 932)
summary(wheaton.fit, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6-8 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
##                                                       
##   Number of observations                           932
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               301.214
##   Degrees of freedom                                 1
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1550.935
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.806
##   Tucker-Lewis Index (TLI)                      -0.166
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9145.166
##   Loglikelihood unrestricted model (H1)      -8994.559
##                                                       
##   Akaike (AIC)                               18316.331
##   Bayesian (BIC)                             18379.217
##   Sample-size adjusted Bayesian (BIC)        18337.930
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.568
##   90 Percent confidence interval - lower         0.515
##   90 Percent confidence interval - upper         0.622
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.094
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   anomia71 ~                                                            
##     anomia67          0.459    0.034   13.490    0.000    0.459    0.464
##     powerless67       0.213    0.040    5.291    0.000    0.213    0.182
##   powerless71 ~                                                         
##     anomia67          0.158    0.032    4.975    0.000    0.158    0.179
##     powerless67       0.430    0.038   11.467    0.000    0.430    0.413
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   anomia67 ~~                                                           
##     powerless67       7.056    0.425   16.590    0.000    7.056    0.647
##  .anomia71 ~~                                                           
##    .powerless71       0.000                               0.000    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .anomia71          0.000    0.093    0.000    1.000    0.000    0.000
##    .powerless71       0.000    0.087    0.000    1.000    0.000    0.000
##     anomia67          0.000    0.118    0.000    1.000    0.000    0.000
##     powerless67       0.000    0.100    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .anomia71          8.067    0.374   21.587    0.000    8.067    0.642
##    .powerless71       7.035    0.326   21.587    0.000    7.035    0.702
##     anomia67         12.878    0.597   21.587    0.000   12.878    1.000
##     powerless67       9.227    0.427   21.587    0.000    9.227    1.000
semPlot::semPaths(wheaton.fit)

3.1.4 Use raw data as input

rawdat <- read.fwf("data/wheaton-generated.dat", widths=rep(8,6),header = FALSE,    col.names = c("anomia67", "powerless67", "anomia71", "powerless71", "educ", "sei"))
head(rawdat)
##   anomia67 powerless67 anomia71 powerless71  educ   sei
## 1     3.68        4.30     5.30        2.84  4.74 24.88
## 2     3.14       -0.17     1.43        4.82  5.52 23.70
## 3    10.77        6.31     7.14        5.02  0.70 19.82
## 4     8.90        6.30     9.39        6.58  0.33 18.31
## 5    13.12        9.71    11.97       10.48 -0.27 16.96
## 6     3.06        4.57     4.45        6.68  0.73 20.94

Alternatively, you can import the original SPSS dataset use the import function from the rio package. Pay attention to the variable names. R is case sensitive. SPSS, like Mplus, is case insensitive.

library(rio)
rawdat2 <- import("data/wheaton-generated.sav")
head(rawdat2)

Fit the model using the sem() function from lavaan.

wheaton.model <- '
    anomia71 ~ anomia67 + powerless67
    powerless71 ~ anomia67 + powerless67 
    anomia67 ~~ powerless67
    anomia71 ~~ 0*powerless71'
wheaton.fit.rawdat <- sem(wheaton.model, data=rawdat, mimic = "Mplus")
summary(wheaton.fit.rawdat, fit.measures = TRUE, standardized = TRUE)
wheaton.fit2.rawdat <- sem(wheaton.model, data=rawdat)
summary(wheaton.fit2.rawdat, fit.measures = TRUE, standardized = TRUE)

3.2 Syntax - Mplus

3.2.1 Regression of Y on X1 and X2 - sample covariance matrix

TITLE: Multiple regression with two independent variables
DATA: FILE IS "data\COV.DAT";
      TYPE IS COVARIANCE;
      NOBSERVATIONS ARE 256;
VARIABLE: NAMES ARE Y X1 X2;
MODEL: Y ON X1 X2;
       X1 WITH X2; 
OUTPUT: SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:19 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Multiple regression with two independent variables
##   DATA: FILE IS "data\COV.DAT";
##         TYPE IS COVARIANCE;
##         NOBSERVATIONS ARE 256;
##   VARIABLE: NAMES ARE Y X1 X2;
##   MODEL: Y ON X1 X2;
##          X1 WITH X2;
##   OUTPUT: SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Multiple regression with two independent variables
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         256
## 
## Number of dependent variables                                    1
## Number of independent variables                                  2
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    Y
## 
## Observed independent variables
##    X1          X2
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\COV.DAT
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y             X1            X2
##               ________      ________      ________
##  Y            160.000
##  X1           106.000       210.000
##  X2           129.000       109.000       225.000
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        6
## 
## Loglikelihood
## 
##           H0 Value                       -2979.780
##           H1 Value                       -2979.780
## 
## Information Criteria
## 
##           Akaike (AIC)                    5971.559
##           Bayesian (BIC)                  5992.830
##           Sample-Size Adjusted BIC        5973.809
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              0.000
##           Degrees of Freedom                     0
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.000
##           90 Percent C.I.                    0.000  0.000
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            197.408
##           Degrees of Freedom                     2
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.000
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y        ON
##     X1                 0.277      0.043      6.454      0.000
##     X2                 0.439      0.041     10.603      0.000
## 
##  X1       WITH
##     X2               108.576     15.139      7.172      0.000
## 
##  Variances
##     X1               209.182     18.489     11.314      0.000
##     X2               224.125     19.810     11.314      0.000
## 
##  Residual Variances
##     Y                 73.716      6.516     11.314      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y        ON
##     X1                 0.317      0.048      6.595      0.000
##     X2                 0.521      0.045     11.638      0.000
## 
##  X1       WITH
##     X2                 0.501      0.047     10.718      0.000
## 
##  Variances
##     X1                 1.000      0.000    999.000    999.000
##     X2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y                  0.463      0.042     10.912      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y        ON
##     X1                 0.317      0.048      6.595      0.000
##     X2                 0.521      0.045     11.638      0.000
## 
##  X1       WITH
##     X2                 0.501      0.047     10.718      0.000
## 
##  Variances
##     X1                 1.000      0.000    999.000    999.000
##     X2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y                  0.463      0.042     10.912      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y        ON
##     X1                 0.277      0.043      6.454      0.000
##     X2                 0.439      0.041     10.603      0.000
## 
##  X1       WITH
##     X2               108.576     15.139      7.172      0.000
## 
##  Variances
##     X1               209.182     18.489     11.314      0.000
##     X2               224.125     19.810     11.314      0.000
## 
##  Residual Variances
##     Y                 73.716      6.516     11.314      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y                  0.537      0.042     12.681      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.829E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
## CONFIDENCE INTERVALS OF MODEL RESULTS
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y        ON
##     X1               0.166       0.193       0.206       0.277       0.347       0.361       0.387
##     X2               0.333       0.358       0.371       0.439       0.507       0.520       0.546
## 
##  X1       WITH
##     X2              69.582      78.904      83.673     108.576     133.480     138.249     147.571
## 
##  Variances
##     X1             161.558     172.943     178.767     209.182     239.597     245.421     256.807
##     X2             173.098     185.297     191.538     224.125     256.713     262.953     275.152
## 
##  Residual Variances
##     Y               56.933      60.945      62.997      73.716      84.434      86.486      90.498
## 
## 
## CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y        ON
##     X1               0.193       0.223       0.238       0.317       0.396       0.411       0.441
##     X2               0.406       0.433       0.447       0.521       0.595       0.609       0.636
## 
##  X1       WITH
##     X2               0.381       0.410       0.424       0.501       0.578       0.593       0.622
## 
##  Variances
##     X1               1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     X2               1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     Y                0.353       0.379       0.393       0.463       0.532       0.546       0.572
## 
## 
## STDY Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y        ON
##     X1               0.193       0.223       0.238       0.317       0.396       0.411       0.441
##     X2               0.406       0.433       0.447       0.521       0.595       0.609       0.636
## 
##  X1       WITH
##     X2               0.381       0.410       0.424       0.501       0.578       0.593       0.622
## 
##  Variances
##     X1               1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     X2               1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     Y                0.353       0.379       0.393       0.463       0.532       0.546       0.572
## 
## 
## STD Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y        ON
##     X1               0.166       0.193       0.206       0.277       0.347       0.361       0.387
##     X2               0.333       0.358       0.371       0.439       0.507       0.520       0.546
## 
##  X1       WITH
##     X2              69.582      78.904      83.673     108.576     133.480     138.249     147.571
## 
##  Variances
##     X1             161.558     172.943     178.767     209.182     239.597     245.421     256.807
##     X2             173.098     185.297     191.538     224.125     256.713     262.953     275.152
## 
##  Residual Variances
##     Y               56.933      60.945      62.997      73.716      84.434      86.486      90.498
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y             X1            X2
##               ________      ________      ________
##  Y            159.384
##  X1           105.588       209.182
##  X2           128.500       108.577       224.125
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y             X1            X2
##               ________      ________      ________
##  Y             -0.009
##  X1            -0.002        -0.003
##  X2            -0.003        -0.002        -0.004
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y             X1            X2
##               ________      ________      ________
##  Y            999.000
##  X1           999.000       999.000
##  X2           999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y             X1            X2
##               ________      ________      ________
##  Y             -0.001
##  X1             0.000         0.000
##  X2             0.000         0.000         0.000
## 
## 
##      Beginning Time:  12:19:09
##         Ending Time:  12:19:09
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

3.2.2 Regression of Y on X1 and X2 - sample correlation matrix and SDs as input

TITLE: this is an example of an overidentified 
path analysis model from Cnudde and McCrone (1966) 
DATA:   FILE IS "data\CORR.DAT";
        TYPE IS CORRELATION STDEVIATIONS;
        NOBSERVATIONS ARE 116;
VARIABLE:    NAMES ARE X Y1 Y2 Y3;
MODEL:          Y1 ON Y2;
                Y2 ON X;
                Y3 ON Y1 Y2;
MODEL INDIRECT: Y3 IND Y2 X;
                Y3 IND Y1 Y2; 
OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:19 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: this is an example of an overidentified
##   path analysis model from Cnudde and McCrone (1966)
##   DATA:   FILE IS "data\CORR.DAT";
##           TYPE IS CORRELATION STDEVIATIONS;
##           NOBSERVATIONS ARE 116;
##   VARIABLE:    NAMES ARE X Y1 Y2 Y3;
##   MODEL:          Y1 ON Y2;
##                   Y2 ON X;
##                   Y3 ON Y1 Y2;
##   MODEL INDIRECT: Y3 IND Y2 X;
##                   Y3 IND Y1 Y2;
##   OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## this is an example of an overidentified
## path analysis model from Cnudde and McCrone (1966)
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         116
## 
## Number of dependent variables                                    3
## Number of independent variables                                  1
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3
## 
## Observed independent variables
##    X
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\CORR.DAT
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            X
##               ________      ________      ________      ________
##  Y1           108.368
##  Y2           100.404       225.000
##  Y3            99.750       164.065       176.624
##  X             71.334       152.323       118.683       189.338
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        7
## 
## Loglikelihood
## 
##           H0 Value                       -1223.560
##           H1 Value                       -1222.871
## 
## Information Criteria
## 
##           Akaike (AIC)                    2461.120
##           Bayesian (BIC)                  2480.395
##           Sample-Size Adjusted BIC        2458.268
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              1.377
##           Degrees of Freedom                     2
##           P-Value                           0.5023
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.000
##           90 Percent C.I.                    0.000  0.165
##           Probability RMSEA <= .05           0.594
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            310.802
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.016
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y1       ON
##     Y2                 0.446      0.049      9.042      0.000
## 
##  Y2       ON
##     X                  0.805      0.068     11.779      0.000
## 
##  Y3       ON
##     Y1                 0.417      0.079      5.291      0.000
##     Y2                 0.543      0.055      9.913      0.000
## 
##  Residual Variances
##     Y1                63.016      8.274      7.616      0.000
##     Y2               101.571     13.337      7.616      0.000
##     Y3                45.517      5.977      7.616      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y1       ON
##     Y2                 0.643      0.054     11.807      0.000
## 
##  Y2       ON
##     X                  0.738      0.042     17.456      0.000
## 
##  Y3       ON
##     Y1                 0.327      0.062      5.316      0.000
##     Y2                 0.613      0.056     10.862      0.000
## 
##  Residual Variances
##     Y1                 0.587      0.070      8.375      0.000
##     Y2                 0.455      0.062      7.297      0.000
##     Y3                 0.260      0.042      6.260      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y1       ON
##     Y2                 0.643      0.054     11.807      0.000
## 
##  Y2       ON
##     X                  0.054      0.003     16.514      0.000
## 
##  Y3       ON
##     Y1                 0.327      0.062      5.316      0.000
##     Y2                 0.613      0.056     10.862      0.000
## 
##  Residual Variances
##     Y1                 0.587      0.070      8.375      0.000
##     Y2                 0.455      0.062      7.297      0.000
##     Y3                 0.260      0.042      6.260      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  Y1       ON
##     Y2                 0.446      0.049      9.042      0.000
## 
##  Y2       ON
##     X                  0.805      0.068     11.779      0.000
## 
##  Y3       ON
##     Y1                 0.417      0.079      5.291      0.000
##     Y2                 0.543      0.055      9.913      0.000
## 
##  Residual Variances
##     Y1                63.016      8.274      7.616      0.000
##     Y2               101.571     13.337      7.616      0.000
##     Y3                45.517      5.977      7.616      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.413      0.070      5.903      0.000
##     Y2                 0.545      0.062      8.728      0.000
##     Y3                 0.740      0.042     17.822      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.203E-01
##        (ratio of smallest to largest eigenvalue)
## 
## 
## TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
## 
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Effects from X to Y3
## 
##   Indirect             0.437      0.058      7.585      0.000
## 
## Effects from Y2 to Y3
## 
##   Indirect             0.186      0.041      4.566      0.000
## 
## 
## STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Effects from X to Y3
## 
##   Indirect             0.452      0.052      8.762      0.000
## 
## Effects from Y2 to Y3
## 
##   Indirect             0.210      0.043      4.878      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Effects from X to Y3
## 
##   Indirect             0.033      0.004      9.169      0.000
## 
## Effects from Y2 to Y3
## 
##   Indirect             0.210      0.043      4.878      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Effects from X to Y3
## 
##   Indirect             0.437      0.058      7.585      0.000
## 
## Effects from Y2 to Y3
## 
##   Indirect             0.186      0.041      4.566      0.000
## 
## 
## 
## CONFIDENCE INTERVALS OF MODEL RESULTS
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y1       ON
##     Y2               0.319       0.350       0.365       0.446       0.527       0.543       0.573
## 
##  Y2       ON
##     X                0.629       0.671       0.692       0.805       0.917       0.938       0.980
## 
##  Y3       ON
##     Y1               0.214       0.263       0.288       0.417       0.547       0.572       0.621
##     Y2               0.402       0.436       0.453       0.543       0.633       0.650       0.684
## 
##  Residual Variances
##     Y1              41.702      46.798      49.404      63.016      76.627      79.233      84.329
##     Y2              67.218      75.431      79.632     101.571     123.510     127.711     135.924
##     Y3              30.122      33.802      35.685      45.517      55.348      57.231      60.911
## 
## 
## CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y1       ON
##     Y2               0.503       0.536       0.553       0.643       0.733       0.750       0.783
## 
##  Y2       ON
##     X                0.629       0.655       0.668       0.738       0.808       0.821       0.847
## 
##  Y3       ON
##     Y1               0.169       0.206       0.226       0.327       0.428       0.448       0.485
##     Y2               0.467       0.502       0.520       0.613       0.706       0.723       0.758
## 
##  Residual Variances
##     Y1               0.406       0.449       0.471       0.587       0.702       0.724       0.767
##     Y2               0.295       0.333       0.353       0.455       0.558       0.578       0.616
##     Y3               0.153       0.179       0.192       0.260       0.328       0.341       0.367
## 
## 
## STDY Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y1       ON
##     Y2               0.503       0.536       0.553       0.643       0.733       0.750       0.783
## 
##  Y2       ON
##     X                0.045       0.047       0.049       0.054       0.059       0.060       0.062
## 
##  Y3       ON
##     Y1               0.169       0.206       0.226       0.327       0.428       0.448       0.485
##     Y2               0.467       0.502       0.520       0.613       0.706       0.723       0.758
## 
##  Residual Variances
##     Y1               0.406       0.449       0.471       0.587       0.702       0.724       0.767
##     Y2               0.295       0.333       0.353       0.455       0.558       0.578       0.616
##     Y3               0.153       0.179       0.192       0.260       0.328       0.341       0.367
## 
## 
## STD Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  Y1       ON
##     Y2               0.319       0.350       0.365       0.446       0.527       0.543       0.573
## 
##  Y2       ON
##     X                0.629       0.671       0.692       0.805       0.917       0.938       0.980
## 
##  Y3       ON
##     Y1               0.214       0.263       0.288       0.417       0.547       0.572       0.621
##     Y2               0.402       0.436       0.453       0.543       0.633       0.650       0.684
## 
##  Residual Variances
##     Y1              41.702      46.798      49.404      63.016      76.627      79.233      84.329
##     Y2              67.218      75.431      79.632     101.571     123.510     127.711     135.924
##     Y3              30.122      33.802      35.685      45.517      55.348      57.231      60.911
## 
## 
## CONFIDENCE INTERVALS OF TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
## 
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
## Effects from X to Y3
## 
##   Indirect           0.288       0.324       0.342       0.437       0.531       0.550       0.585
## 
## Effects from Y2 to Y3
## 
##   Indirect           0.081       0.106       0.119       0.186       0.253       0.266       0.291
## 
## 
## CONFIDENCE INTERVALS OF STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
## 
## 
## STDYX Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
## Effects from X to Y3
## 
##   Indirect           0.319       0.351       0.367       0.452       0.537       0.553       0.585
## 
## Effects from Y2 to Y3
## 
##   Indirect           0.099       0.126       0.139       0.210       0.281       0.295       0.321
## 
## 
## STDY Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
## Effects from X to Y3
## 
##   Indirect           0.024       0.026       0.027       0.033       0.039       0.040       0.042
## 
## Effects from Y2 to Y3
## 
##   Indirect           0.099       0.126       0.139       0.210       0.281       0.295       0.321
## 
## 
## STD Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
## Effects from X to Y3
## 
##   Indirect           0.288       0.324       0.342       0.437       0.531       0.550       0.585
## 
## Effects from Y2 to Y3
## 
##   Indirect           0.081       0.106       0.119       0.186       0.253       0.266       0.291
## 
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            X
##               ________      ________      ________      ________
##  Y1           107.434
##  Y2            99.538       223.059
##  Y3            98.889       162.650       175.101
##  X             67.387       151.010       110.113       187.705
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            X
##               ________      ________      ________      ________
##  Y1             0.000
##  Y2             0.001         0.001
##  Y3             0.000         0.001         0.001
##  X              3.332         0.000         7.547         0.000
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y1            Y2            Y3            X
##               ________      ________      ________      ________
##  Y1             0.008
##  Y2             0.012         0.011
##  Y3             0.006         0.010         0.011
##  X              0.469         0.000         1.004         0.000
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            X
##               ________      ________      ________      ________
##  Y1             0.000
##  Y2             0.000         0.000
##  Y3             0.000         0.000         0.000
##  X              0.226         0.000         0.376         0.000
## 
## 
##      Beginning Time:  12:19:09
##         Ending Time:  12:19:10
##        Elapsed Time:  00:00:01
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

3.2.3 Path analysis model - Wheaton et al. (1977) example

TITLE: Path analysis model - Wheaton et al. (1977) example

DATA:   FILE IS "data\Wheaton.txt";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 932;
VARIABLE:    NAMES ARE X1 X2 X3 X4;
MODEL: X3 ON X1 X2;
       X4 ON X1 X2;
       X1 WITH X2; 
       ! estimate covariance between X1 and X2
       X1*; X2*; 
       ! estimate variances of X1 and X2
       X3 WITH X4@0; 
   ! fix the residual covariance between X3 and X4 at 0. 
   ! otherwise, it is a free parameter by default
OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:19 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Path analysis model - Wheaton et al. (1977) example
## 
##   DATA:   FILE IS "data\Wheaton.txt";
##           TYPE IS COVARIANCE;
##           NOBSERVATIONS ARE 932;
##   VARIABLE:    NAMES ARE X1 X2 X3 X4;
##   MODEL: X3 ON X1 X2;
##          X4 ON X1 X2;
##          X1 WITH X2;
##          ! estimate covariance between X1 and X2
##          X1*; X2*;
##          ! estimate variances of X1 and X2
##          X3 WITH X4@0;
##      ! fix the residual covariance between X3 and X4 at 0.
##      ! otherwise, it is a free parameter by default
##   OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Path analysis model - Wheaton et al. (1977) example
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         932
## 
## Number of dependent variables                                    2
## Number of independent variables                                  2
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    X3          X4
## 
## Observed independent variables
##    X1          X2
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\Wheaton.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               X3            X4            X1            X2
##               ________      ________      ________      ________
##  X3            12.585
##  X4             7.375        10.036
##  X1             7.417         5.077        12.892
##  X2             5.205         5.091         7.064         9.237
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        9
## 
## Loglikelihood
## 
##           H0 Value                       -9145.166
##           H1 Value                       -8994.559
## 
## Information Criteria
## 
##           Akaike (AIC)                   18308.331
##           Bayesian (BIC)                 18351.867
##           Sample-Size Adjusted BIC       18323.284
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                            301.214
##           Degrees of Freedom                     1
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.568
##           90 Percent C.I.                    0.515  0.622
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.711
##           TLI                                0.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           1044.799
##           Degrees of Freedom                     5
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.112
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  X3       ON
##     X1                 0.459      0.034     13.490      0.000
##     X2                 0.213      0.040      5.291      0.000
## 
##  X4       ON
##     X1                 0.158      0.032      4.975      0.000
##     X2                 0.430      0.038     11.467      0.000
## 
##  X1       WITH
##     X2                 7.056      0.425     16.590      0.000
## 
##  X3       WITH
##     X4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     X1                12.878      0.597     21.587      0.000
##     X2                 9.227      0.427     21.587      0.000
## 
##  Residual Variances
##     X3                 8.067      0.374     21.587      0.000
##     X4                 7.035      0.326     21.587      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  X3       ON
##     X1                 0.464      0.032     14.393      0.000
##     X2                 0.182      0.034      5.333      0.000
## 
##  X4       ON
##     X1                 0.179      0.036      5.016      0.000
##     X2                 0.413      0.034     12.063      0.000
## 
##  X1       WITH
##     X2                 0.647      0.019     34.016      0.000
## 
##  X3       WITH
##     X4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     X1                 1.000      0.000    999.000    999.000
##     X2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     X3                 0.642      0.025     25.499      0.000
##     X4                 0.702      0.025     27.951      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  X3       ON
##     X1                 0.464      0.032     14.393      0.000
##     X2                 0.182      0.034      5.333      0.000
## 
##  X4       ON
##     X1                 0.179      0.036      5.016      0.000
##     X2                 0.413      0.034     12.063      0.000
## 
##  X1       WITH
##     X2                 0.647      0.019     34.016      0.000
## 
##  X3       WITH
##     X4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     X1                 1.000      0.000    999.000    999.000
##     X2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     X3                 0.642      0.025     25.499      0.000
##     X4                 0.702      0.025     27.951      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  X3       ON
##     X1                 0.459      0.034     13.490      0.000
##     X2                 0.213      0.040      5.291      0.000
## 
##  X4       ON
##     X1                 0.158      0.032      4.975      0.000
##     X2                 0.430      0.038     11.467      0.000
## 
##  X1       WITH
##     X2                 7.056      0.425     16.590      0.000
## 
##  X3       WITH
##     X4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     X1                12.878      0.597     21.587      0.000
##     X2                 9.227      0.427     21.587      0.000
## 
##  Residual Variances
##     X3                 8.067      0.374     21.587      0.000
##     X4                 7.035      0.326     21.587      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     X3                 0.358      0.025     14.240      0.000
##     X4                 0.298      0.025     11.878      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.161E-01
##        (ratio of smallest to largest eigenvalue)
## 
## 
## CONFIDENCE INTERVALS OF MODEL RESULTS
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  X3       ON
##     X1               0.371       0.392       0.403       0.459       0.515       0.525       0.546
##     X2               0.109       0.134       0.147       0.213       0.279       0.291       0.316
## 
##  X4       ON
##     X1               0.076       0.096       0.106       0.158       0.210       0.220       0.240
##     X2               0.334       0.357       0.369       0.430       0.492       0.504       0.527
## 
##  X1       WITH
##     X2               5.961       6.223       6.357       7.056       7.756       7.890       8.152
## 
##  X3       WITH
##     X4               0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Variances
##     X1              11.342      11.709      11.897      12.878      13.860      14.047      14.415
##     X2               8.126       8.389       8.524       9.227       9.930      10.065      10.328
## 
##  Residual Variances
##     X3               7.104       7.334       7.452       8.067       8.681       8.799       9.029
##     X4               6.196       6.397       6.499       7.035       7.572       7.674       7.875
## 
## 
## CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  X3       ON
##     X1               0.381       0.401       0.411       0.464       0.517       0.528       0.547
##     X2               0.094       0.115       0.126       0.182       0.238       0.249       0.270
## 
##  X4       ON
##     X1               0.087       0.109       0.120       0.179       0.238       0.249       0.271
##     X2               0.325       0.346       0.357       0.413       0.469       0.480       0.501
## 
##  X1       WITH
##     X2               0.598       0.610       0.616       0.647       0.679       0.685       0.696
## 
##  X3       WITH
##     X4               0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Variances
##     X1               1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     X2               1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     X3               0.577       0.592       0.600       0.642       0.683       0.691       0.706
##     X4               0.637       0.653       0.660       0.702       0.743       0.751       0.766
## 
## 
## STDY Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  X3       ON
##     X1               0.381       0.401       0.411       0.464       0.517       0.528       0.547
##     X2               0.094       0.115       0.126       0.182       0.238       0.249       0.270
## 
##  X4       ON
##     X1               0.087       0.109       0.120       0.179       0.238       0.249       0.271
##     X2               0.325       0.346       0.357       0.413       0.469       0.480       0.501
## 
##  X1       WITH
##     X2               0.598       0.610       0.616       0.647       0.679       0.685       0.696
## 
##  X3       WITH
##     X4               0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Variances
##     X1               1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     X2               1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     X3               0.577       0.592       0.600       0.642       0.683       0.691       0.706
##     X4               0.637       0.653       0.660       0.702       0.743       0.751       0.766
## 
## 
## STD Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  X3       ON
##     X1               0.371       0.392       0.403       0.459       0.515       0.525       0.546
##     X2               0.109       0.134       0.147       0.213       0.279       0.291       0.316
## 
##  X4       ON
##     X1               0.076       0.096       0.106       0.158       0.210       0.220       0.240
##     X2               0.334       0.357       0.369       0.430       0.492       0.504       0.527
## 
##  X1       WITH
##     X2               5.961       6.223       6.357       7.056       7.756       7.890       8.152
## 
##  X3       WITH
##     X4               0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Variances
##     X1              11.342      11.709      11.897      12.878      13.860      14.047      14.415
##     X2               8.126       8.389       8.524       9.227       9.930      10.065      10.328
## 
##  Residual Variances
##     X3               7.104       7.334       7.452       8.067       8.681       8.799       9.029
##     X4               6.196       6.397       6.499       7.035       7.572       7.674       7.875
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               X3            X4            X1            X2
##               ________      ________      ________      ________
##  X3            12.572
##  X4             3.408        10.025
##  X1             7.409         5.072        12.878
##  X2             5.199         5.086         7.056         9.227
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               X3            X4            X1            X2
##               ________      ________      ________      ________
##  X3             0.000
##  X4             3.959         0.000
##  X1             0.000         0.000         0.000
##  X2             0.000         0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               X3            X4            X1            X2
##               ________      ________      ________      ________
##  X3           999.000
##  X4            12.122       999.000
##  X1           999.000       999.000       999.000
##  X2           999.000       999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               X3            X4            X1            X2
##               ________      ________      ________      ________
##  X3             0.000
##  X4             9.001         0.000
##  X1             0.000         0.000         0.000
##  X2             0.000         0.000         0.000         0.000
## 
## 
##      Beginning Time:  12:19:10
##         Ending Time:  12:19:10
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

3.2.4 Use raw data as input

TITLE: Path analysis model - Wheaton et al. (1977) example 
       raw data
DATA:   FILE IS "data\wheaton-generated.dat";
        FORMAT IS F8 F8 F8 F8 F8 F8; 
        ! you can also use 6F8;
VARIABLE:    NAMES ARE anomia67 powles67 anomia71 powles71 educ sei;
             USEVARIABLES ARE anomia67 powles67 anomia71 powles71;
MODEL:          anomia71 ON anomia67 powles67;
                powles71 ON anomia67 powles67;
                anomia67 WITH powles67; 
                ! estimate covariance 
                anomia67*; powles67*; 
                ! estimate variances
                anomia71 WITH powles71@0; 
                ! fix the residual covariance at 0.
OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:19 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Path analysis model - Wheaton et al. (1977) example
##          raw data
##   DATA:   FILE IS "data\wheaton-generated.dat";
##           FORMAT IS F8 F8 F8 F8 F8 F8;
##           ! you can also use 6F8;
##   VARIABLE:    NAMES ARE anomia67 powles67 anomia71 powles71 educ sei;
##                USEVARIABLES ARE anomia67 powles67 anomia71 powles71;
##   MODEL:          anomia71 ON anomia67 powles67;
##                   powles71 ON anomia67 powles67;
##                   anomia67 WITH powles67;
##                   ! estimate covariance
##                   anomia67*; powles67*;
##                   ! estimate variances
##                   anomia71 WITH powles71@0;
##                   ! fix the residual covariance at 0.
##   OUTPUT:     SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Path analysis model - Wheaton et al. (1977) example
## raw data
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         932
## 
## Number of dependent variables                                    2
## Number of independent variables                                  2
## Number of continuous latent variables                            0
## 
## Observed dependent variables
## 
##   Continuous
##    ANOMIA71    POWLES71
## 
## Observed independent variables
##    ANOMIA67    POWLES67
## 
## 
## Estimator                                                       ML
## Information matrix                                        OBSERVED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\wheaton-generated.dat
## 
## Input data format
##   (F8 F8 F8 F8 F8 F8)
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Means
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##                 3.557         3.079         3.559         3.087
## 
## 
##            Covariances
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71      12.572
##  POWLES71       7.366        10.025
##  ANOMIA67       7.409         5.070        12.877
##  POWLES67       5.199         5.086         7.056         9.227
## 
## 
##            Correlations
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71       1.000
##  POWLES71       0.656         1.000
##  ANOMIA67       0.582         0.446         1.000
##  POWLES67       0.483         0.529         0.647         1.000
## 
## 
## UNIVARIATE SAMPLE STATISTICS
## 
## 
##      UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS
## 
##          Variable/         Mean/     Skewness/   Minimum/ % with                Percentiles
##         Sample Size      Variance    Kurtosis    Maximum  Min/Max      20%/60%    40%/80%    Median
## 
##      ANOMIA71              3.557       0.074      -7.410    0.11%       0.630      2.590      3.510
##              932.000      12.572       0.087      15.630    0.11%       4.270      6.730
##      POWLES71              3.079      -0.036      -6.680    0.11%       0.410      2.190      3.120
##              932.000      10.025      -0.212      13.630    0.11%       3.950      5.700
##      ANOMIA67              3.559       0.115      -7.910    0.11%       0.700      2.530      3.340
##              932.000      12.877       0.134      15.080    0.11%       4.170      6.570
##      POWLES67              3.087      -0.030      -6.360    0.11%       0.490      2.330      3.110
##              932.000       9.227       0.086      13.550    0.11%       3.870      5.610
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       13
## 
## Loglikelihood
## 
##           H0 Value                       -9145.171
##           H1 Value                       -8994.594
## 
## Information Criteria
## 
##           Akaike (AIC)                   18316.342
##           Bayesian (BIC)                 18379.227
##           Sample-Size Adjusted BIC       18337.940
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                            301.153
##           Degrees of Freedom                     1
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.567
##           90 Percent C.I.                    0.515  0.622
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.711
##           TLI                                0.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           1044.669
##           Degrees of Freedom                     5
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.094
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  ANOMIA71 ON
##     ANOMIA67           0.459      0.034     13.489      0.000
##     POWLES67           0.213      0.040      5.291      0.000
## 
##  POWLES71 ON
##     ANOMIA67           0.158      0.032      4.970      0.000
##     POWLES67           0.430      0.038     11.470      0.000
## 
##  ANOMIA67 WITH
##     POWLES67           7.057      0.425     16.589      0.000
## 
##  ANOMIA71 WITH
##     POWLES71           0.000      0.000    999.000    999.000
## 
##  Means
##     ANOMIA67           3.559      0.118     30.274      0.000
##     POWLES67           3.087      0.100     31.021      0.000
## 
##  Intercepts
##     ANOMIA71           1.268      0.139      9.136      0.000
##     POWLES71           1.188      0.130      9.171      0.000
## 
##  Variances
##     ANOMIA67          12.878      0.597     21.586      0.000
##     POWLES67           9.228      0.427     21.586      0.000
## 
##  Residual Variances
##     ANOMIA71           8.067      0.374     21.588      0.000
##     POWLES71           7.035      0.326     21.588      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  ANOMIA71 ON
##     ANOMIA67           0.464      0.032     14.391      0.000
##     POWLES67           0.182      0.034      5.332      0.000
## 
##  POWLES71 ON
##     ANOMIA67           0.179      0.036      5.011      0.000
##     POWLES67           0.413      0.034     12.066      0.000
## 
##  ANOMIA67 WITH
##     POWLES67           0.647      0.019     34.019      0.000
## 
##  ANOMIA71 WITH
##     POWLES71           0.000      0.000    999.000    999.000
## 
##  Means
##     ANOMIA67           0.992      0.040     24.787      0.000
##     POWLES67           1.016      0.040     25.192      0.000
## 
##  Intercepts
##     ANOMIA71           0.358      0.044      8.164      0.000
##     POWLES71           0.375      0.046      8.214      0.000
## 
##  Variances
##     ANOMIA67           1.000      0.000    999.000    999.000
##     POWLES67           1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     ANOMIA71           0.642      0.025     25.499      0.000
##     POWLES71           0.702      0.025     27.951      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  ANOMIA71 ON
##     ANOMIA67           0.464      0.032     14.391      0.000
##     POWLES67           0.182      0.034      5.332      0.000
## 
##  POWLES71 ON
##     ANOMIA67           0.179      0.036      5.011      0.000
##     POWLES67           0.413      0.034     12.066      0.000
## 
##  ANOMIA67 WITH
##     POWLES67           0.647      0.019     34.019      0.000
## 
##  ANOMIA71 WITH
##     POWLES71           0.000      0.000    999.000    999.000
## 
##  Means
##     ANOMIA67           0.992      0.040     24.787      0.000
##     POWLES67           1.016      0.040     25.192      0.000
## 
##  Intercepts
##     ANOMIA71           0.358      0.044      8.164      0.000
##     POWLES71           0.375      0.046      8.214      0.000
## 
##  Variances
##     ANOMIA67           1.000      0.000    999.000    999.000
##     POWLES67           1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     ANOMIA71           0.642      0.025     25.499      0.000
##     POWLES71           0.702      0.025     27.951      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  ANOMIA71 ON
##     ANOMIA67           0.459      0.034     13.489      0.000
##     POWLES67           0.213      0.040      5.291      0.000
## 
##  POWLES71 ON
##     ANOMIA67           0.158      0.032      4.970      0.000
##     POWLES67           0.430      0.038     11.470      0.000
## 
##  ANOMIA67 WITH
##     POWLES67           7.057      0.425     16.589      0.000
## 
##  ANOMIA71 WITH
##     POWLES71           0.000      0.000    999.000    999.000
## 
##  Means
##     ANOMIA67           3.559      0.118     30.274      0.000
##     POWLES67           3.087      0.100     31.021      0.000
## 
##  Intercepts
##     ANOMIA71           1.268      0.139      9.136      0.000
##     POWLES71           1.188      0.130      9.171      0.000
## 
##  Variances
##     ANOMIA67          12.878      0.597     21.586      0.000
##     POWLES67           9.228      0.427     21.586      0.000
## 
##  Residual Variances
##     ANOMIA71           8.067      0.374     21.588      0.000
##     POWLES71           7.035      0.326     21.588      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     ANOMIA71           0.358      0.025     14.239      0.000
##     POWLES71           0.298      0.025     11.878      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.719E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
## CONFIDENCE INTERVALS OF MODEL RESULTS
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  ANOMIA71 ON
##     ANOMIA67         0.371       0.392       0.403       0.459       0.515       0.525       0.546
##     POWLES67         0.109       0.134       0.146       0.213       0.279       0.291       0.316
## 
##  POWLES71 ON
##     ANOMIA67         0.076       0.096       0.106       0.158       0.210       0.220       0.240
##     POWLES67         0.334       0.357       0.369       0.430       0.492       0.504       0.527
## 
##  ANOMIA67 WITH
##     POWLES67         5.961       6.223       6.357       7.057       7.757       7.891       8.153
## 
##  ANOMIA71 WITH
##     POWLES71         0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Means
##     ANOMIA67         3.256       3.328       3.365       3.559       3.752       3.789       3.862
##     POWLES67         2.830       2.892       2.923       3.087       3.250       3.282       3.343
## 
##  Intercepts
##     ANOMIA71         0.910       0.996       1.039       1.268       1.496       1.540       1.625
##     POWLES71         0.855       0.934       0.975       1.188       1.402       1.442       1.522
## 
##  Variances
##     ANOMIA67        11.342      11.709      11.897      12.878      13.860      14.048      14.415
##     POWLES67         8.127       8.390       8.524       9.228       9.931      10.066      10.329
## 
##  Residual Variances
##     ANOMIA71         7.104       7.335       7.452       8.067       8.682       8.799       9.030
##     POWLES71         6.196       6.397       6.499       7.035       7.571       7.674       7.875
## 
## 
## CONFIDENCE INTERVALS OF STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  ANOMIA71 ON
##     ANOMIA67         0.381       0.401       0.411       0.464       0.517       0.528       0.547
##     POWLES67         0.094       0.115       0.126       0.182       0.238       0.249       0.270
## 
##  POWLES71 ON
##     ANOMIA67         0.087       0.109       0.120       0.179       0.238       0.249       0.271
##     POWLES67         0.325       0.346       0.357       0.413       0.469       0.480       0.501
## 
##  ANOMIA67 WITH
##     POWLES67         0.598       0.610       0.616       0.647       0.679       0.685       0.696
## 
##  ANOMIA71 WITH
##     POWLES71         0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Means
##     ANOMIA67         0.889       0.913       0.926       0.992       1.057       1.070       1.095
##     POWLES67         0.912       0.937       0.950       1.016       1.082       1.095       1.120
## 
##  Intercepts
##     ANOMIA71         0.245       0.272       0.285       0.358       0.430       0.443       0.470
##     POWLES71         0.258       0.286       0.300       0.375       0.451       0.465       0.493
## 
##  Variances
##     ANOMIA67         1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     POWLES67         1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     ANOMIA71         0.577       0.592       0.600       0.642       0.683       0.691       0.706
##     POWLES71         0.637       0.653       0.660       0.702       0.743       0.751       0.766
## 
## 
## STDY Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  ANOMIA71 ON
##     ANOMIA67         0.381       0.401       0.411       0.464       0.517       0.528       0.547
##     POWLES67         0.094       0.115       0.126       0.182       0.238       0.249       0.270
## 
##  POWLES71 ON
##     ANOMIA67         0.087       0.109       0.120       0.179       0.238       0.249       0.271
##     POWLES67         0.325       0.346       0.357       0.413       0.469       0.480       0.501
## 
##  ANOMIA67 WITH
##     POWLES67         0.598       0.610       0.616       0.647       0.679       0.685       0.696
## 
##  ANOMIA71 WITH
##     POWLES71         0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Means
##     ANOMIA67         0.889       0.913       0.926       0.992       1.057       1.070       1.095
##     POWLES67         0.912       0.937       0.950       1.016       1.082       1.095       1.120
## 
##  Intercepts
##     ANOMIA71         0.245       0.272       0.285       0.358       0.430       0.443       0.470
##     POWLES71         0.258       0.286       0.300       0.375       0.451       0.465       0.493
## 
##  Variances
##     ANOMIA67         1.000       1.000       1.000       1.000       1.000       1.000       1.000
##     POWLES67         1.000       1.000       1.000       1.000       1.000       1.000       1.000
## 
##  Residual Variances
##     ANOMIA71         0.577       0.592       0.600       0.642       0.683       0.691       0.706
##     POWLES71         0.637       0.653       0.660       0.702       0.743       0.751       0.766
## 
## 
## STD Standardization
## 
##                   Lower .5%  Lower 2.5%    Lower 5%    Estimate    Upper 5%  Upper 2.5%   Upper .5%
## 
##  ANOMIA71 ON
##     ANOMIA67         0.371       0.392       0.403       0.459       0.515       0.525       0.546
##     POWLES67         0.109       0.134       0.146       0.213       0.279       0.291       0.316
## 
##  POWLES71 ON
##     ANOMIA67         0.076       0.096       0.106       0.158       0.210       0.220       0.240
##     POWLES67         0.334       0.357       0.369       0.430       0.492       0.504       0.527
## 
##  ANOMIA67 WITH
##     POWLES67         5.961       6.223       6.357       7.057       7.757       7.891       8.153
## 
##  ANOMIA71 WITH
##     POWLES71         0.000       0.000       0.000       0.000       0.000       0.000       0.000
## 
##  Means
##     ANOMIA67         3.256       3.328       3.365       3.559       3.752       3.789       3.862
##     POWLES67         2.830       2.892       2.923       3.087       3.250       3.282       3.343
## 
##  Intercepts
##     ANOMIA71         0.910       0.996       1.039       1.268       1.496       1.540       1.625
##     POWLES71         0.855       0.934       0.975       1.188       1.402       1.442       1.522
## 
##  Variances
##     ANOMIA67        11.342      11.709      11.897      12.878      13.860      14.048      14.415
##     POWLES67         8.127       8.390       8.524       9.228       9.931      10.066      10.329
## 
##  Residual Variances
##     ANOMIA71         7.104       7.335       7.452       8.067       8.682       8.799       9.030
##     POWLES71         6.196       6.397       6.499       7.035       7.571       7.674       7.875
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Means
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##                 3.557         3.079         3.559         3.087
## 
## 
##            Residuals for Means
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##                 0.000         0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Means
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##                 0.000         0.000         0.000         0.000
## 
## 
##            Normalized Residuals for Means
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##                 0.000         0.000         0.000         0.000
## 
## 
##            Model Estimated Covariances
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71      12.572
##  POWLES71       3.408        10.025
##  ANOMIA67       7.409         5.071        12.878
##  POWLES67       5.200         5.086         7.057         9.228
## 
## 
##            Model Estimated Correlations
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71       1.000
##  POWLES71       0.304         1.000
##  ANOMIA67       0.582         0.446         1.000
##  POWLES67       0.483         0.529         0.647         1.000
## 
## 
##            Residuals for Covariances
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71       0.000
##  POWLES71       3.959         0.000
##  ANOMIA67       0.000         0.000        -0.001
##  POWLES67       0.000         0.000        -0.001         0.000
## 
## 
##            Residuals for Correlations
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71       0.000
##  POWLES71       0.353         0.000
##  ANOMIA67       0.000         0.000         0.000
##  POWLES67       0.000         0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Covariances
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71     999.000
##  POWLES71      12.122         0.048
##  ANOMIA67     999.000       999.000       999.000
##  POWLES67     999.000       999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Covariances
##               ANOMIA71      POWLES71      ANOMIA67      POWLES67
##               ________      ________      ________      ________
##  ANOMIA71       0.000
##  POWLES71       9.000         0.000
##  ANOMIA67      -0.001        -0.001        -0.001
##  POWLES67      -0.001         0.000        -0.001        -0.001
## 
## 
##      Beginning Time:  12:19:10
##         Ending Time:  12:19:10
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen