Chapter 7 Models with Mean Structures

library(lavaan); library(semPlot)

7.1 Syntax - R - MIMIC model

MATHSINGLEGROUP.cor <- '
1.000       
0.747 1.000
0.736 0.666 1.000 
0.092 0.080 0.079 1.000'
MATHSINGLEGROUP.SDs <- c(37.24, 36.97, 46.03, 0.50)
MATHSINGLEGROUP.cov <- getCov(MATHSINGLEGROUP.cor, sds = MATHSINGLEGROUP.SDs, names = c("math", "prob", "proc", "dummy"))
MIMIC.model <- '
f =~ math + prob + proc
f ~ dummy
dummy ~~ dummy'
MIMIC.fit <- sem(MIMIC.model, sample.cov = MATHSINGLEGROUP.cov, sample.nobs = 2000) 
summary(MIMIC.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 144 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
##                                                       
##   Number of observations                          2000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.064
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.968
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3349.268
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.002
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -30402.179
##   Loglikelihood unrestricted model (H1)     -30402.146
##                                                       
##   Akaike (AIC)                               60820.357
##   Bayesian (BIC)                             60865.164
##   Sample-size adjusted Bayesian (BIC)        60839.748
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.001
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     math              1.000                              33.832    0.909
##     prob              0.898    0.021   43.630    0.000   30.384    0.822
##     proc              1.102    0.026   42.916    0.000   37.274    0.810
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f ~                                                                   
##     dummy             6.734    1.592    4.231    0.000    0.199    0.099
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     dummy             0.250    0.008   31.623    0.000    0.250    1.000
##    .math            241.519   18.975   12.729    0.000  241.519    0.174
##    .prob            442.883   19.819   22.347    0.000  442.883    0.324
##    .proc            728.355   31.242   23.314    0.000  728.355    0.344
##    .f              1133.275   46.117   24.574    0.000    0.990    0.990
## 
## R-Square:
##                    Estimate
##     math              0.826
##     prob              0.676
##     proc              0.656
##     f                 0.010

7.2 Syntax - R - Structured Means Modeling

SMM.G1.cor <- '
1.000   
0.738 1.000 
0.714 0.645 1.000'
SMM.G1.SDs <- c(37.09, 37.33, 45.10)
SMM.G1.means <- c(685.34, 679.10, 694.60)
SMM.G2.cor <- '
1.000   
0.752 1.000     
0.754 0.684 1.000'
SMM.G2.SDs <- c(37.07, 36.36, 46.67)
SMM.G2.means <- c(692.18, 685.03, 701.84)
SMM.G1.cov <- getCov(SMM.G1.cor, sds = SMM.G1.SDs, names = c("math", "prob", "proc"))
SMM.G2.cov <- getCov(SMM.G2.cor, sds = SMM.G2.SDs, names = c("math", "prob", "proc"))
SMM.model <- 'f =~ math + prob + proc'
SMM.fit <- cfa(SMM.model, sample.cov = list(SMM.G1.cov, SMM.G2.cov), sample.mean = list(SMM.G1.means, SMM.G2.means), sample.nobs = c(1000, 1000), group.equal = c("loadings", "intercepts"))
summary(SMM.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 393 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
##   Number of equality constraints                     5
##                                                       
##   Number of observations per group:                   
##     Group 1                                       1000
##     Group 2                                       1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 4.246
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.374
##   Test statistic for each group:
##     Group 1                                      2.231
##     Group 2                                      2.015
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3313.997
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -28947.160
##   Loglikelihood unrestricted model (H1)     -28945.037
##                                                       
##   Akaike (AIC)                               57922.320
##   Bayesian (BIC)                             58000.732
##   Sample-size adjusted Bayesian (BIC)        57956.254
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.008
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.049
##   P-value RMSEA <= 0.05                          0.956
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [Group 1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     math              1.000                              33.292    0.901
##     prob    (.p2.)    0.898    0.021   43.710    0.000   29.896    0.810
##     proc    (.p3.)    1.105    0.026   43.059    0.000   36.800    0.803
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .math    (.p8.)  685.404    1.142  600.137    0.000  685.404   18.543
##    .prob    (.p9.)  679.045    1.085  626.045    0.000  679.045   18.393
##    .proc    (.10.)  694.503    1.344  516.872    0.000  694.503   15.149
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .math            257.931   25.677   10.045    0.000  257.931    0.189
##    .prob            469.226   28.390   16.528    0.000  469.226    0.344
##    .proc            747.461   44.332   16.860    0.000  747.461    0.356
##     f              1108.340   60.376   18.357    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     math              0.811
##     prob              0.656
##     proc              0.644
## 
## 
## Group 2 [Group 2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     math              1.000                              33.943    0.913
##     prob    (.p2.)    0.898    0.021   43.710    0.000   30.480    0.831
##     proc    (.p3.)    1.105    0.026   43.059    0.000   37.519    0.817
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .math    (.p8.)  685.404    1.142  600.137    0.000  685.404   18.446
##    .prob    (.p9.)  679.045    1.085  626.045    0.000  679.045   18.508
##    .proc    (.10.)  694.503    1.344  516.872    0.000  694.503   15.122
##     f                 6.719    1.590    4.227    0.000    0.198    0.198
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .math            228.586   23.731    9.632    0.000  228.586    0.166
##    .prob            416.978   25.698   16.226    0.000  416.978    0.310
##    .proc            701.501   41.356   16.962    0.000  701.501    0.333
##     f              1152.103   61.736   18.662    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     math              0.834
##     prob              0.690
##     proc              0.667
# obtain model-implied (fitted) covariance matrix and mean vector
fitted(SMM.fit) 
## $`Group 1`
## $`Group 1`$cov
##      math     prob     proc    
## math 1366.271                  
## prob  995.289 1362.995         
## proc 1225.120 1100.158 2101.666
## 
## $`Group 1`$mean
##    math    prob    proc 
## 685.404 679.045 694.503 
## 
## 
## $`Group 2`
## $`Group 2`$cov
##      math     prob     proc    
## math 1380.688                  
## prob 1034.588 1346.038         
## proc 1273.494 1143.597 2109.176
## 
## $`Group 2`$mean
##    math    prob    proc 
## 692.123 685.079 701.931
#obtain unstandardized residuals of a fitted model
resid(SMM.fit)
## $`Group 1`
## $`Group 1`$type
## [1] "raw"
## 
## $`Group 1`$cov
##      math    prob    proc   
## math   8.021                
## prob  25.502  29.140        
## proc -31.965 -15.333 -69.690
## 
## $`Group 1`$mean
##   math   prob   proc 
## -0.064  0.055  0.097 
## 
## 
## $`Group 2`
## $`Group 2`$type
## [1] "raw"
## 
## $`Group 2`$cov
##      math    prob    proc   
## math  -7.878                
## prob -22.007 -25.311        
## proc  29.664  15.936  66.734
## 
## $`Group 2`$mean
##   math   prob   proc 
##  0.057 -0.049 -0.091
#obtain standardized residuals of a fitted model
resid(SMM.fit, type="standardized")
## $`Group 1`
## $`Group 1`$type
## [1] "standardized"
## 
## $`Group 1`$cov
##      math   prob   proc  
## math  0.821              
## prob  2.608  1.758       
## proc -2.534 -0.888 -2.584
## 
## $`Group 1`$mean
##   math   prob   proc 
## -0.357  0.176  0.245 
## 
## 
## $`Group 2`
## $`Group 2`$type
## [1] "standardized"
## 
## $`Group 2`$cov
##      math   prob   proc  
## math -0.974              
## prob -2.850 -1.804       
## proc  2.808  1.131  2.953
## 
## $`Group 2`$mean
##   math   prob   proc 
##  0.372 -0.185 -0.257

7.2.1 Configural invariance model

SMM.reading.G1.corr <- '
1.00    
0.77 1.00 
0.63 0.65 1.00'
SMM.reading.G1.SDs <- c(48.21, 40.32, 39.13)
SMM.reading.G1.means <- c(692.36, 680.63, 654.31)
SMM.reading.G2.corr <- '
1.00 
0.78 1.00   
0.65 0.65 1.00'
SMM.reading.G2.SDs <- c(45.88, 39.69, 38.37)
SMM.reading.G2.means <- c(709.47, 696.67, 669.17)
SMM.reading.G1.cov <- getCov(SMM.reading.G1.corr, sds = SMM.reading.G1.SDs, names = c("voc", "comp", "lang"))
SMM.reading.G2.cov <- getCov(SMM.reading.G2.corr, sds = SMM.reading.G2.SDs, names = c("voc", "comp", "lang"))
SMM.reading.model <- 'f =~ voc + comp + lang'
SMM.reading.configural.fit <- cfa(SMM.reading.model, sample.cov = list(SMM.reading.G1.cov, SMM.reading.G2.cov), sample.mean = list(SMM.reading.G1.means, SMM.reading.G2.means), sample.nobs = c(1000, 1000), std.lv = TRUE)
summary(SMM.reading.configural.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
##                                                       
##   Number of observations per group:                   
##     Group 1                                       1000
##     Group 2                                       1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
##   Test statistic for each group:
##     Group 1                                      0.000
##     Group 2                                      0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3103.084
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -29352.796
##   Loglikelihood unrestricted model (H1)     -29352.796
##                                                       
##   Akaike (AIC)                               58741.591
##   Bayesian (BIC)                             58842.408
##   Sample-size adjusted Bayesian (BIC)        58785.221
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [Group 1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc              41.627    1.312   31.723    0.000   41.627    0.864
##     comp             35.920    1.085   33.104    0.000   35.920    0.891
##     lang             28.522    1.117   25.531    0.000   28.522    0.729
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             692.360    1.524  454.373    0.000  692.360   14.369
##    .comp            680.630    1.274  534.082    0.000  680.630   16.889
##    .lang            654.310    1.237  529.043    0.000  654.310   16.730
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             589.043   50.404   11.686    0.000  589.043    0.254
##    .comp            333.838   35.308    9.455    0.000  333.838    0.206
##    .lang            716.143   37.851   18.920    0.000  716.143    0.468
##     f                 1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.746
##     comp              0.794
##     lang              0.532
## 
## 
## Group 2 [Group 2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc              40.500    1.229   32.946    0.000   40.500    0.883
##     comp             35.036    1.063   32.946    0.000   35.036    0.883
##     lang             28.225    1.088   25.947    0.000   28.225    0.736
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             709.470    1.450  489.247    0.000  709.470   15.471
##    .comp            696.670    1.254  555.346    0.000  696.670   17.562
##    .lang            669.170    1.213  551.775    0.000  669.170   17.449
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             462.631   43.889   10.541    0.000  462.631    0.220
##    .comp            346.219   32.845   10.541    0.000  346.219    0.220
##    .lang            674.110   35.529   18.974    0.000  674.110    0.458
##     f                 1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.780
##     comp              0.780
##     lang              0.542
## 
## Modification Indices:
## 
##  [1] lhs      op       rhs      block    group    level    mi       epc     
##  [9] sepc.lv  sepc.all sepc.nox
## <0 rows> (or 0-length row.names)

7.2.2 Metric invariance/factor loading invariance

Note: For the metric and scalar invariance models, the latent factors are identified using the reference indicator approach. The factor variance for group 1 was NOT fixed at 1. The “std.lv = TRUE” argument should not be used because if it is used, all factor variances would be forced to be equal to 1.

SMM.reading.metric.fit <- cfa(SMM.reading.model, sample.cov = list(SMM.reading.G1.cov, SMM.reading.G2.cov), sample.mean = list(SMM.reading.G1.means, SMM.reading.G2.means), sample.nobs = c(1000, 1000), group.equal = "loadings")
summary(SMM.reading.metric.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 119 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        18
##   Number of equality constraints                     2
##                                                       
##   Number of observations per group:                   
##     Group 1                                       1000
##     Group 2                                       1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.105
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.949
##   Test statistic for each group:
##     Group 1                                      0.053
##     Group 2                                      0.052
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3103.084
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.002
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -29352.848
##   Loglikelihood unrestricted model (H1)     -29352.796
##                                                       
##   Akaike (AIC)                               58737.696
##   Bayesian (BIC)                             58827.311
##   Sample-size adjusted Bayesian (BIC)        58776.478
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.005
##   P-value RMSEA <= 0.05                          0.996
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [Group 1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              41.545    0.863
##     comp    (.p2.)    0.864    0.020   42.989    0.000   35.897    0.891
##     lang    (.p3.)    0.691    0.019   36.630    0.000   28.713    0.732
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             692.360    1.522  454.880    0.000  692.360   14.385
##    .comp            680.630    1.274  534.310    0.000  680.630   16.896
##    .lang            654.310    1.241  527.453    0.000  654.310   16.680
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             590.690   46.241   12.774    0.000  590.690    0.255
##    .comp            334.089   31.891   10.476    0.000  334.089    0.206
##    .lang            714.401   37.411   19.096    0.000  714.401    0.464
##     f              1726.008   98.323   17.555    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.745
##     comp              0.794
##     lang              0.536
## 
## 
## Group 2 [Group 2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              40.571    0.884
##     comp    (.p2.)    0.864    0.020   42.989    0.000   35.056    0.883
##     lang    (.p3.)    0.691    0.019   36.630    0.000   28.040    0.733
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             709.470    1.452  488.777    0.000  709.470   15.456
##    .comp            696.670    1.255  555.092    0.000  696.670   17.554
##    .lang            669.170    1.209  553.421    0.000  669.170   17.501
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             460.883   40.602   11.351    0.000  460.883    0.219
##    .comp            346.272   30.361   11.405    0.000  346.272    0.220
##    .lang            675.787   35.137   19.233    0.000  675.787    0.462
##     f              1646.030   92.054   17.881    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.781
##     comp              0.780
##     lang              0.538
## 
## Modification Indices:
## 
##     lhs op  rhs block group level    mi     epc sepc.lv sepc.all sepc.nox
## 1     f =~  voc     1     1     1 0.034   0.008   0.324    0.007    0.007
## 12    f =~  voc     2     2     1 0.034  -0.008  -0.316   -0.007   -0.007
## 25  voc ~~ comp     1     1     1 0.102  23.484  23.484    0.053    0.053
## 26  voc ~~ lang     1     1     1 0.008  -4.389  -4.389   -0.007   -0.007
## 27 comp ~~ lang     1     1     1 0.034  -8.030  -8.030   -0.016   -0.016
## 28  voc ~~ comp     2     2     1 0.102 -22.396 -22.396   -0.056   -0.056
## 29  voc ~~ lang     2     2     1 0.008   4.186   4.186    0.007    0.007
## 30 comp ~~ lang     2     2     1 0.034   7.658   7.658    0.016    0.016

7.2.3 Scalar invariance/intercept invariance model

SMM.reading.scalar.fit <- cfa(SMM.reading.model, sample.cov = list(SMM.reading.G1.cov, SMM.reading.G2.cov), sample.mean = list(SMM.reading.G1.means, SMM.reading.G2.means), sample.nobs = c(1000, 1000), group.equal = c("loadings", "intercepts"))
summary(SMM.reading.scalar.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 226 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
##   Number of equality constraints                     5
##                                                       
##   Number of observations per group:                   
##     Group 1                                       1000
##     Group 2                                       1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 4.706
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.319
##   Test statistic for each group:
##     Group 1                                      2.635
##     Group 2                                      2.071
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3103.084
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -29355.149
##   Loglikelihood unrestricted model (H1)     -29352.796
##                                                       
##   Akaike (AIC)                               58738.297
##   Bayesian (BIC)                             58816.710
##   Sample-size adjusted Bayesian (BIC)        58772.231
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.013
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.051
##   P-value RMSEA <= 0.05                          0.943
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.011
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [Group 1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              41.316    0.861
##     comp    (.p2.)    0.870    0.019   44.973    0.000   35.946    0.892
##     lang    (.p3.)    0.701    0.018   37.995    0.000   28.971    0.735
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc     (.p8.)  691.678    1.455  475.458    0.000  691.678   14.407
##    .comp    (.p9.)  680.677    1.242  547.898    0.000  680.677   16.895
##    .lang    (.10.)  655.343    1.122  584.297    0.000  655.343   16.629
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             598.097   45.727   13.080    0.000  598.097    0.259
##    .comp            331.125   31.561   10.491    0.000  331.125    0.204
##    .lang            713.796   37.496   19.037    0.000  713.796    0.460
##     f              1706.971   96.584   17.673    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.741
##     comp              0.796
##     lang              0.540
## 
## 
## Group 2 [Group 2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              40.362    0.881
##     comp    (.p2.)    0.870    0.019   44.973    0.000   35.116    0.885
##     lang    (.p3.)    0.701    0.018   37.995    0.000   28.302    0.737
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc     (.p8.)  691.678    1.455  475.458    0.000  691.678   15.104
##    .comp    (.p9.)  680.677    1.242  547.898    0.000  680.677   17.145
##    .lang    (.10.)  655.343    1.122  584.297    0.000  655.343   17.060
##     f                18.325    1.950    9.398    0.000    0.454    0.454
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             468.055   40.053   11.686    0.000  468.055    0.223
##    .comp            342.990   30.035   11.420    0.000  342.990    0.218
##    .lang            674.667   35.193   19.170    0.000  674.667    0.457
##     f              1629.068   90.587   17.984    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.777
##     comp              0.782
##     lang              0.543
## 
## Modification Indices:
## 
##     lhs op  rhs block group level    mi     epc sepc.lv sepc.all sepc.nox
## 1     f =~  voc     1     1     1 0.344   0.024   0.985    0.021    0.021
## 12    f =~  voc     2     2     1 0.344  -0.024  -0.962   -0.021   -0.021
## 28  voc ~~ comp     1     1     1 0.561  53.066  53.066    0.119    0.119
## 29  voc ~~ lang     1     1     1 0.003  -2.452  -2.452   -0.004   -0.004
## 30 comp ~~ lang     1     1     1 0.344 -24.832 -24.832   -0.051   -0.051
## 31  voc ~~ comp     2     2     1 0.019   9.360   9.360    0.023    0.023
## 32  voc ~~ lang     2     2     1 0.020   6.540   6.540    0.012    0.012
## 33 comp ~~ lang     2     2     1 0.068 -10.460 -10.460   -0.022   -0.022

7.2.4 Partial invariance model

SMM.reading.scalar.fit.partial <- cfa(SMM.reading.model, sample.cov = list(SMM.reading.G1.cov, SMM.reading.G2.cov), sample.mean = list(SMM.reading.G1.means, SMM.reading.G2.means), sample.nobs = c(1000, 1000), group.equal = c("loadings", "intercepts"), group.partial = c("f=~comp", "comp~1"))
summary(SMM.reading.scalar.fit.partial, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 273 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        19
##   Number of equality constraints                     3
##                                                       
##   Number of observations per group:                   
##     Group 1                                       1000
##     Group 2                                       1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 4.668
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.097
##   Test statistic for each group:
##     Group 1                                      2.612
##     Group 2                                      2.055
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3103.084
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999
##   Tucker-Lewis Index (TLI)                       0.997
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -29355.130
##   Loglikelihood unrestricted model (H1)     -29352.796
##                                                       
##   Akaike (AIC)                               58742.259
##   Bayesian (BIC)                             58831.874
##   Sample-size adjusted Bayesian (BIC)        58781.041
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.037
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.081
##   P-value RMSEA <= 0.05                          0.623
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.011
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [Group 1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              41.298    0.860
##     comp              0.871    0.028   31.506    0.000   35.967    0.892
##     lang    (.p3.)    0.701    0.018   37.967    0.000   28.951    0.735
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc     (.p8.)  691.731    1.489  464.517    0.000  691.731   14.410
##    .comp            680.630    1.274  534.082    0.000  680.630   16.889
##    .lang    (.10.)  655.380    1.141  574.509    0.000  655.380   16.634
##     f                 0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             598.666   48.809   12.265    0.000  598.666    0.260
##    .comp            330.450   34.976    9.448    0.000  330.450    0.203
##    .lang            714.134   37.712   18.936    0.000  714.134    0.460
##     f              1705.548  102.981   16.562    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.740
##     comp              0.797
##     lang              0.540
## 
## 
## Group 2 [Group 2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   f =~                                                                  
##     voc               1.000                              40.418    0.882
##     comp              0.867    0.027   32.558    0.000   35.055    0.884
##     lang    (.p3.)    0.701    0.018   37.967    0.000   28.334    0.737
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc     (.p8.)  691.731    1.489  464.517    0.000  691.731   15.097
##    .comp            680.861    1.557  437.325    0.000  680.861   17.163
##    .lang    (.10.)  655.380    1.141  574.509    0.000  655.380   17.051
##     f                18.228    2.032    8.970    0.000    0.451    0.451
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .voc             465.700   42.660   10.916    0.000  465.700    0.222
##    .comp            344.898   32.607   10.577    0.000  344.898    0.219
##    .lang            674.462   35.279   19.118    0.000  674.462    0.457
##     f              1633.619   95.439   17.117    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     voc               0.778
##     comp              0.781
##     lang              0.543
semPaths(SMM.reading.scalar.fit.partial, intercepts = FALSE)

7.3 Syntax - Mplus - MIMIC model

TITLE: MIMIC approach to latent means models
DATA: FILE IS "data\MATHSINGLEGROUP.txt";
      TYPE IS CORRELATION STDEVIATIONS;
      NOBSERVATIONS ARE 2000;
VARIABLE: NAMES ARE math prob proc dummy;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY math prob proc;
       f ON dummy;
       dummy*;
OUTPUT: SAMP STAND MOD;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: MIMIC approach to latent means models
##   DATA: FILE IS "data\MATHSINGLEGROUP.txt";
##         TYPE IS CORRELATION STDEVIATIONS;
##         NOBSERVATIONS ARE 2000;
##   VARIABLE: NAMES ARE math prob proc dummy;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY math prob proc;
##          f ON dummy;
##          dummy*;
##   OUTPUT: SAMP STAND MOD;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## MIMIC approach to latent means models
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                        2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  1
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    MATH        PROB        PROC
## 
## Observed independent variables
##    DUMMY
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\MATHSINGLEGROUP.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC          DUMMY
##               ________      ________      ________      ________
##  MATH        1386.818
##  PROB        1028.442      1366.781
##  PROC        1261.620      1133.352      2118.761
##  DUMMY          1.713         1.479         1.818         0.250
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        8
## 
## Loglikelihood
## 
##           H0 Value                      -30402.179
##           H1 Value                      -30402.146
## 
## Information Criteria
## 
##           Akaike (AIC)                   60820.357
##           Bayesian (BIC)                 60865.164
##           Sample-Size Adjusted BIC       60839.748
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              0.064
##           Degrees of Freedom                     2
##           P-Value                           0.9683
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.000
##           90 Percent C.I.                    0.000  0.000
##           Probability RMSEA <= .05           1.000
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3349.268
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.001
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F        BY
##     MATH               1.000      0.000    999.000    999.000
##     PROB               0.898      0.021     43.629      0.000
##     PROC               1.102      0.026     42.915      0.000
## 
##  F        ON
##     DUMMY              6.736      1.592      4.232      0.000
## 
##  Variances
##     DUMMY              0.250      0.008     31.623      0.000
## 
##  Residual Variances
##     MATH             241.506     18.975     12.727      0.000
##     PROB             442.909     19.819     22.347      0.000
##     PROC             728.356     31.241     23.314      0.000
##     F               1133.296     46.117     24.574      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F        BY
##     MATH               0.909      0.008    114.741      0.000
##     PROB               0.822      0.010     85.922      0.000
##     PROC               0.810      0.010     82.236      0.000
## 
##  F        ON
##     DUMMY              0.100      0.023      4.256      0.000
## 
##  Variances
##     DUMMY              1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     MATH               0.174      0.014     12.105      0.000
##     PROB               0.324      0.016     20.611      0.000
##     PROC               0.344      0.016     21.557      0.000
##     F                  0.990      0.005    212.696      0.000
## 
## 
## STDY Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F        BY
##     MATH               0.909      0.008    114.741      0.000
##     PROB               0.822      0.010     85.922      0.000
##     PROC               0.810      0.010     82.236      0.000
## 
##  F        ON
##     DUMMY              0.100      0.023      4.256      0.000
## 
##  Variances
##     DUMMY              1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     MATH               0.174      0.014     12.105      0.000
##     PROB               0.324      0.016     20.611      0.000
##     PROC               0.344      0.016     21.557      0.000
##     F                  0.990      0.005    212.696      0.000
## 
## 
## STD Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F        BY
##     MATH              33.832      0.688     49.203      0.000
##     PROB              30.384      0.711     42.735      0.000
##     PROC              37.273      0.890     41.891      0.000
## 
##  F        ON
##     DUMMY              0.199      0.047      4.265      0.000
## 
##  Variances
##     DUMMY              0.250      0.008     31.623      0.000
## 
##  Residual Variances
##     MATH             241.506     18.975     12.727      0.000
##     PROB             442.909     19.819     22.347      0.000
##     PROC             728.356     31.241     23.314      0.000
##     F                  0.990      0.005    212.696      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     MATH               0.826      0.014     57.370      0.000
##     PROB               0.676      0.016     42.961      0.000
##     PROC               0.656      0.016     41.118      0.000
## 
##      Latent                                         Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     F                  0.010      0.005      2.128      0.033
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.280E-03
##        (ratio of smallest to largest eigenvalue)
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index    10.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## 
## No modification indices above the minimum value.
## 
## 
## 
##      Beginning Time:  12:20:08
##         Ending Time:  12:20:08
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

7.4 Syntax - Mplus - Structured Means Modeling

TITLE: Structural Means Modeling
DATA: FILE IS "data\MATHBOTHGROUPS.txt";
      TYPE IS CORRELATION MEANS STDEVIATIONS;
      NOBSERVATIONS ARE 1000 1000;
      NGROUPS IS 2;
VARIABLE: NAMES ARE math prob proc;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY math prob proc;
OUTPUT: SAMP STDYX RES MOD;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Structural Means Modeling
##   DATA: FILE IS "data\MATHBOTHGROUPS.txt";
##         TYPE IS CORRELATION MEANS STDEVIATIONS;
##         NOBSERVATIONS ARE 1000 1000;
##         NGROUPS IS 2;
##   VARIABLE: NAMES ARE math prob proc;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY math prob proc;
##   OUTPUT: SAMP STDYX RES MOD;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Structural Means Modeling
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 2
## Number of observations
##    Group G1                                                   1000
##    Group G2                                                   1000
##    Total sample size                                          2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  0
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    MATH        PROB        PROC
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\MATHBOTHGROUPS.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS FOR G1
## 
## 
##            Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##               685.340       679.100       694.600
## 
## 
##            Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH        1375.668
##  PROB        1021.812      1393.529
##  PROC        1194.350      1085.911      2034.010
## 
## 
##      SAMPLE STATISTICS FOR G2
## 
## 
##            Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##               692.180       685.030       701.840
## 
## 
##            Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH        1374.185
##  PROB        1013.595      1322.050
##  PROC        1304.463      1160.694      2178.089
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       14
## 
## Loglikelihood
## 
##           H0 Value                      -28947.160
##           H1 Value                      -28945.037
## 
## Information Criteria
## 
##           Akaike (AIC)                   57922.320
##           Bayesian (BIC)                 58000.732
##           Sample-Size Adjusted BIC       57956.254
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              4.246
##           Degrees of Freedom                     4
##           P-Value                           0.3737
## 
## Chi-Square Contribution From Each Group
## 
##           G1                                 2.231
##           G2                                 2.015
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.008
##           90 Percent C.I.                    0.000  0.049
##           Probability RMSEA <= .05           0.956
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3313.997
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.016
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     MATH               1.000      0.000    999.000    999.000
##     PROB               0.898      0.021     43.711      0.000
##     PROC               1.105      0.026     43.059      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     MATH             685.404      1.142    600.135      0.000
##     PROB             679.045      1.085    626.044      0.000
##     PROC             694.503      1.344    516.871      0.000
## 
##  Variances
##     F               1108.350     60.377     18.357      0.000
## 
##  Residual Variances
##     MATH             257.928     25.677     10.045      0.000
##     PROB             469.220     28.390     16.528      0.000
##     PROC             747.455     44.332     16.860      0.000
## 
## Group G2
## 
##  F        BY
##     MATH               1.000      0.000    999.000    999.000
##     PROB               0.898      0.021     43.711      0.000
##     PROC               1.105      0.026     43.059      0.000
## 
##  Means
##     F                  6.719      1.590      4.227      0.000
## 
##  Intercepts
##     MATH             685.404      1.142    600.135      0.000
##     PROB             679.045      1.085    626.044      0.000
##     PROC             694.503      1.344    516.871      0.000
## 
##  Variances
##     F               1152.107     61.736     18.662      0.000
## 
##  Residual Variances
##     MATH             228.591     23.731      9.632      0.000
##     PROB             416.979     25.698     16.226      0.000
##     PROC             701.506     41.356     16.962      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     MATH               0.901      0.011     85.148      0.000
##     PROB               0.810      0.013     64.575      0.000
##     PROC               0.803      0.013     62.955      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     MATH              18.543      0.406     45.642      0.000
##     PROB              18.393      0.384     47.955      0.000
##     PROC              15.149      0.315     48.018      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     MATH               0.189      0.019      9.908      0.000
##     PROB               0.344      0.020     16.951      0.000
##     PROC               0.356      0.020     17.374      0.000
## 
## Group G2
## 
##  F        BY
##     MATH               0.913      0.010     94.614      0.000
##     PROB               0.831      0.012     71.285      0.000
##     PROC               0.817      0.012     67.803      0.000
## 
##  Means
##     F                  0.198      0.047      4.207      0.000
## 
##  Intercepts
##     MATH              18.446      0.406     45.394      0.000
##     PROB              18.508      0.392     47.259      0.000
##     PROC              15.122      0.318     47.537      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     MATH               0.166      0.018      9.386      0.000
##     PROB               0.310      0.019     15.997      0.000
##     PROC               0.333      0.020     16.894      0.000
## 
## 
## R-SQUARE
## 
## Group G1
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     MATH               0.811      0.019     42.574      0.000
##     PROB               0.656      0.020     32.288      0.000
##     PROC               0.644      0.020     31.478      0.000
## 
## Group G2
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     MATH               0.834      0.018     47.307      0.000
##     PROB               0.690      0.019     35.643      0.000
##     PROC               0.667      0.020     33.901      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.632E-05
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G1
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##               685.404       679.045       694.503
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                -0.064         0.055         0.097
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                -0.242         0.119         0.203
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                -0.055         0.047         0.068
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH        1366.278
##  PROB         995.296      1362.994
##  PROC        1225.131      1100.165      2101.672
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH           8.015
##  PROB          25.495        29.141
##  PROC         -31.975       -15.340       -69.696
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH           0.544
##  PROB           1.543         1.124
##  PROC          -2.809        -0.708        -2.661
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH           0.130
##  PROB           0.469         0.468
##  PROC          -0.492        -0.242        -0.767
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G2
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##               692.123       685.079       701.931
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                 0.057        -0.049        -0.091
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                 0.281        -0.140        -0.159
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               MATH          PROB          PROC
##               ________      ________      ________
##                 0.048        -0.043        -0.062
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH        1380.699
##  PROB        1034.590      1346.039
##  PROC        1273.499      1143.599      2109.187
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH          -7.888
##  PROB         -22.009       -25.311
##  PROC          29.660        15.934        66.724
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH          -0.817
##  PROB          -3.610        -1.538
##  PROC           1.503         0.722         1.624
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               MATH          PROB          PROC
##               ________      ________      ________
##  MATH          -0.128
##  PROB          -0.413        -0.429
##  PROC           0.433         0.245         0.686
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index    10.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## Group G1
## 
## 
## No modification indices above the minimum value.
## 
## Group G2
## 
## 
## No modification indices above the minimum value.
## 
## 
## 
##      Beginning Time:  12:20:08
##         Ending Time:  12:20:08
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

7.4.1 Configural invariance model

TITLE: Structural Means Modeling - 
        configural invariance
DATA: FILE IS "data\READINGBOTHGROUPS.txt";
      TYPE IS CORRELATION MEANS STDEVIATIONS;
      NOBSERVATIONS ARE 1000 1000;
      NGROUPS IS 2;
VARIABLE: NAMES ARE voc comp lang;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY voc* comp lang;
       [voc*]; [comp*]; [lang*];
       [f@0]; f@1;
MODEL G2: f BY voc* comp lang;
       [voc*]; [comp*]; [lang*];
       [f@0]; f@1; 
OUTPUT: SAMP STDYX RES MOD(0);
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Structural Means Modeling -
##           configural invariance
##   DATA: FILE IS "data\READINGBOTHGROUPS.txt";
##         TYPE IS CORRELATION MEANS STDEVIATIONS;
##         NOBSERVATIONS ARE 1000 1000;
##         NGROUPS IS 2;
##   VARIABLE: NAMES ARE voc comp lang;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY voc* comp lang;
##          [voc*]; [comp*]; [lang*];
##          [f@0]; f@1;
##   MODEL G2: f BY voc* comp lang;
##          [voc*]; [comp*]; [lang*];
##          [f@0]; f@1;
##   OUTPUT: SAMP STDYX RES MOD(0);
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Structural Means Modeling -
## configural invariance
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 2
## Number of observations
##    Group G1                                                   1000
##    Group G2                                                   1000
##    Total sample size                                          2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  0
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    VOC         COMP        LANG
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\READINGBOTHGROUPS.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS FOR G1
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2324.204
##  COMP        1496.747      1625.702
##  LANG        1188.468      1025.519      1531.157
## 
## 
##      SAMPLE STATISTICS FOR G2
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2104.974
##  COMP        1420.362      1575.296
##  LANG        1144.270       989.888      1472.257
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       18
## 
## Loglikelihood
## 
##           H0 Value                      -29352.796
##           H1 Value                      -29352.796
## 
## Information Criteria
## 
##           Akaike (AIC)                   58741.591
##           Bayesian (BIC)                 58842.408
##           Sample-Size Adjusted BIC       58785.221
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              0.000
##           Degrees of Freedom                     0
##           P-Value                           0.0000
## 
## Chi-Square Contribution From Each Group
## 
##           G1                                 0.000
##           G2                                 0.000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.000
##           90 Percent C.I.                    0.000  0.000
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3103.084
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.000
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC               41.629      1.312     31.724      0.000
##     COMP              35.921      1.085     33.105      0.000
##     LANG              28.523      1.117     25.533      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              692.360      1.524    454.360      0.000
##     COMP             680.630      1.274    534.066      0.000
##     LANG             654.310      1.237    529.030      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC              589.034     50.403     11.687      0.000
##     COMP             333.843     35.307      9.455      0.000
##     LANG             716.113     37.850     18.920      0.000
## 
## Group G2
## 
##  F        BY
##     VOC               40.500      1.229     32.946      0.000
##     COMP              35.036      1.063     32.946      0.000
##     LANG              28.225      1.088     25.947      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              709.470      1.450    489.247      0.000
##     COMP             696.670      1.255    555.337      0.000
##     LANG             669.170      1.213    551.775      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC              462.621     43.889     10.541      0.000
##     COMP             346.237     32.846     10.541      0.000
##     LANG             674.117     35.529     18.974      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC                0.864      0.013     64.558      0.000
##     COMP               0.891      0.013     69.523      0.000
##     LANG               0.729      0.017     42.042      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               14.368      0.323     44.506      0.000
##     COMP              16.889      0.379     44.565      0.000
##     LANG              16.729      0.375     44.562      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.254      0.023     10.972      0.000
##     COMP               0.206      0.023      8.994      0.000
##     LANG               0.468      0.025     18.502      0.000
## 
## Group G2
## 
##  F        BY
##     VOC                0.883      0.013     70.488      0.000
##     COMP               0.883      0.013     70.487      0.000
##     LANG               0.736      0.017     43.559      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               15.471      0.347     44.536      0.000
##     COMP              17.561      0.394     44.577      0.000
##     LANG              17.449      0.391     44.575      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.220      0.022      9.940      0.000
##     COMP               0.220      0.022      9.941      0.000
##     LANG               0.458      0.025     18.429      0.000
## 
## 
## R-SQUARE
## 
## Group G1
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.746      0.023     32.279      0.000
##     COMP               0.794      0.023     34.761      0.000
##     LANG               0.532      0.025     21.021      0.000
## 
## Group G2
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.780      0.022     35.244      0.000
##     COMP               0.780      0.022     35.243      0.000
##     LANG               0.542      0.025     21.779      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.536E-04
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G1
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2322.008
##  COMP        1495.361      1624.170
##  LANG        1187.403      1024.594      1529.700
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           -0.128
##  COMP          -0.111        -0.093
##  LANG          -0.123        -0.101        -0.075
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC          999.000
##  COMP         999.000       999.000
##  LANG         999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           -0.001
##  COMP          -0.001        -0.001
##  LANG          -0.002        -0.002        -0.001
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G2
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2102.870
##  COMP        1418.965      1573.771
##  LANG        1143.125       988.908      1470.786
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.000
##  COMP          -0.023        -0.050
##  LANG           0.000        -0.009        -0.001
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC          999.000
##  COMP         999.000       999.000
##  LANG         999.000       999.000       999.000
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.000
##  COMP           0.000        -0.001
##  LANG           0.000         0.000         0.000
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index     0.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## Group G1
## 
## 
## No modification indices above the minimum value.
## 
## Group G2
## 
## 
## No modification indices above the minimum value.
## 
## 
## 
##      Beginning Time:  12:20:09
##         Ending Time:  12:20:09
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

7.4.2 Metric invariance/factor loading invariance

TITLE: Structural Means Modeling - 
        factor loading invariance
DATA: FILE IS "data\READINGBOTHGROUPS.txt";
      TYPE IS CORRELATION MEANS STDEVIATIONS;
      NOBSERVATIONS ARE 1000 1000;
      NGROUPS IS 2;
VARIABLE: NAMES ARE voc comp lang;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY voc* (1)
            comp (2)
            lang (3);
       [voc*]; [comp*]; [lang*];
       [f@0]; f@1;
MODEL G2: 
       [voc*]; [comp*]; [lang*];
       [f@0]; f*; ! factor variance in G2 is freed   
OUTPUT: SAMP STDYX RES MOD(0);
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Structural Means Modeling -
##           factor loading invariance
##   DATA: FILE IS "data\READINGBOTHGROUPS.txt";
##         TYPE IS CORRELATION MEANS STDEVIATIONS;
##         NOBSERVATIONS ARE 1000 1000;
##         NGROUPS IS 2;
##   VARIABLE: NAMES ARE voc comp lang;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY voc* (1)
##               comp (2)
##               lang (3);
##          [voc*]; [comp*]; [lang*];
##          [f@0]; f@1;
##   MODEL G2:
##          [voc*]; [comp*]; [lang*];
##          [f@0]; f*; ! factor variance in G2 is freed
##   OUTPUT: SAMP STDYX RES MOD(0);
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Structural Means Modeling -
## factor loading invariance
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 2
## Number of observations
##    Group G1                                                   1000
##    Group G2                                                   1000
##    Total sample size                                          2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  0
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    VOC         COMP        LANG
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\READINGBOTHGROUPS.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS FOR G1
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2324.204
##  COMP        1496.747      1625.702
##  LANG        1188.468      1025.519      1531.157
## 
## 
##      SAMPLE STATISTICS FOR G2
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2104.974
##  COMP        1420.362      1575.296
##  LANG        1144.270       989.888      1472.257
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       16
## 
## Loglikelihood
## 
##           H0 Value                      -29352.848
##           H1 Value                      -29352.796
## 
## Information Criteria
## 
##           Akaike (AIC)                   58737.696
##           Bayesian (BIC)                 58827.311
##           Sample-Size Adjusted BIC       58776.478
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              0.105
##           Degrees of Freedom                     2
##           P-Value                           0.9489
## 
## Chi-Square Contribution From Each Group
## 
##           G1                                 0.054
##           G2                                 0.051
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.000
##           90 Percent C.I.                    0.000  0.005
##           Probability RMSEA <= .05           0.996
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3103.084
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.003
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC               41.548      1.183     35.110      0.000
##     COMP              35.899      0.997     35.998      0.000
##     LANG              28.716      0.941     30.526      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              692.360      1.522    454.863      0.000
##     COMP             680.630      1.274    534.284      0.000
##     LANG             654.310      1.241    527.419      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC              590.610     46.239     12.773      0.000
##     COMP             334.092     31.891     10.476      0.000
##     LANG             714.433     37.413     19.096      0.000
## 
## Group G2
## 
##  F        BY
##     VOC               41.548      1.183     35.110      0.000
##     COMP              35.899      0.997     35.998      0.000
##     LANG              28.716      0.941     30.526      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              709.470      1.451    488.784      0.000
##     COMP             696.670      1.255    555.090      0.000
##     LANG             669.170      1.209    553.406      0.000
## 
##  Variances
##     F                  0.953      0.068     14.006      0.000
## 
##  Residual Variances
##     VOC              460.862     40.603     11.351      0.000
##     COMP             346.347     30.363     11.407      0.000
##     LANG             675.852     35.140     19.233      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC                0.863      0.012     74.148      0.000
##     COMP               0.891      0.011     79.802      0.000
##     LANG               0.732      0.015     48.949      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               14.384      0.311     46.213      0.000
##     COMP              16.896      0.370     45.665      0.000
##     LANG              16.678      0.340     49.081      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.255      0.020     12.684      0.000
##     COMP               0.206      0.020     10.344      0.000
##     LANG               0.464      0.022     21.204      0.000
## 
## Group G2
## 
##  F        BY
##     VOC                0.884      0.011     79.700      0.000
##     COMP               0.883      0.011     79.583      0.000
##     LANG               0.733      0.015     49.377      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               15.457      0.338     45.775      0.000
##     COMP              17.553      0.383     45.839      0.000
##     LANG              17.500      0.357     49.057      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.219      0.020     11.158      0.000
##     COMP               0.220      0.020     11.215      0.000
##     LANG               0.462      0.022     21.221      0.000
## 
## 
## R-SQUARE
## 
## Group G1
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.745      0.020     37.074      0.000
##     COMP               0.794      0.020     39.901      0.000
##     LANG               0.536      0.022     24.475      0.000
## 
## Group G2
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.781      0.020     39.850      0.000
##     COMP               0.780      0.020     39.792      0.000
##     LANG               0.538      0.022     24.689      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.552E-04
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G1
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2316.880
##  COMP        1491.557      1622.849
##  LANG        1193.117      1030.895      1539.060
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            5.000
##  COMP           3.693         1.227
##  LANG          -5.838        -6.401        -9.434
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.173
##  COMP           0.285         0.076
##  LANG          -0.228        -0.319        -0.338
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.048
##  COMP           0.048         0.017
##  LANG          -0.083        -0.108        -0.138
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G2
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               999.000         0.000         0.000
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.000         0.000         0.000
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2106.849
##  COMP        1422.191      1575.169
##  LANG        1137.630       982.952      1462.128
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           -3.979
##  COMP          -3.249        -1.448
##  LANG           5.496         5.947         8.656
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           -0.189
##  COMP          -0.344        -0.089
##  LANG           0.232         0.289         0.306
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           -0.042
##  COMP          -0.045        -0.021
##  LANG           0.083         0.104         0.132
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index     0.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## Group G1
## 
## 
## BY Statements
## 
## F        BY VOC                    0.034     0.103      0.103        0.002
## F        BY COMP                   0.007     0.036      0.036        0.001
## F        BY LANG                   0.104    -0.195     -0.195       -0.005
## 
## WITH Statements
## 
## LANG     WITH VOC                  0.008    -4.472     -4.472       -0.007
## LANG     WITH COMP                 0.034    -7.983     -7.983       -0.016
## 
## Group G2
## 
## 
## BY Statements
## 
## F        BY VOC                    0.033    -0.218     -0.213       -0.005
## F        BY COMP                   0.008    -0.095     -0.093       -0.002
## F        BY LANG                   0.101     0.258      0.252        0.007
## 
## WITH Statements
## 
## LANG     WITH VOC                  0.007     4.138      4.138        0.007
## LANG     WITH COMP                 0.036     7.830      7.830        0.016
## 
## 
## 
##      Beginning Time:  12:20:09
##         Ending Time:  12:20:09
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

7.4.3 Scalar invariance/intercept invariance model

TITLE: Structural Means Modeling - 
        factor loading & intercept invariance
DATA: FILE IS "data\READINGBOTHGROUPS.txt";
      TYPE IS CORRELATION MEANS STDEVIATIONS;
      NOBSERVATIONS ARE 1000 1000;
      NGROUPS IS 2;
VARIABLE: NAMES ARE voc comp lang;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY voc* (1)
            comp (2)
            lang (3);
       [voc*] (i1); 
       [comp*] (i2); 
       [lang*] (i3);
       [f@0]; f@1;
MODEL G2: 
       [f*]; ! factor mean in G2 is freed
        f*; ! factor variance in G2 is freed   
OUTPUT: SAMP STDYX RES MOD(0);
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Structural Means Modeling -
##           factor loading & intercept invariance
##   DATA: FILE IS "data\READINGBOTHGROUPS.txt";
##         TYPE IS CORRELATION MEANS STDEVIATIONS;
##         NOBSERVATIONS ARE 1000 1000;
##         NGROUPS IS 2;
##   VARIABLE: NAMES ARE voc comp lang;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY voc* (1)
##               comp (2)
##               lang (3);
##          [voc*] (i1);
##          [comp*] (i2);
##          [lang*] (i3);
##          [f@0]; f@1;
##   MODEL G2:
##          [f*]; ! factor mean in G2 is freed
##           f*; ! factor variance in G2 is freed
##   OUTPUT: SAMP STDYX RES MOD(0);
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Structural Means Modeling -
## factor loading & intercept invariance
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 2
## Number of observations
##    Group G1                                                   1000
##    Group G2                                                   1000
##    Total sample size                                          2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  0
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    VOC         COMP        LANG
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\READINGBOTHGROUPS.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS FOR G1
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2324.204
##  COMP        1496.747      1625.702
##  LANG        1188.468      1025.519      1531.157
## 
## 
##      SAMPLE STATISTICS FOR G2
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2104.974
##  COMP        1420.362      1575.296
##  LANG        1144.270       989.888      1472.257
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       14
## 
## Loglikelihood
## 
##           H0 Value                      -29355.149
##           H1 Value                      -29352.796
## 
## Information Criteria
## 
##           Akaike (AIC)                   58738.297
##           Bayesian (BIC)                 58816.710
##           Sample-Size Adjusted BIC       58772.231
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              4.706
##           Degrees of Freedom                     4
##           P-Value                           0.3188
## 
## Chi-Square Contribution From Each Group
## 
##           G1                                 2.635
##           G2                                 2.071
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.013
##           90 Percent C.I.                    0.000  0.051
##           Probability RMSEA <= .05           0.943
## 
## CFI/TLI
## 
##           CFI                                1.000
##           TLI                                1.000
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3103.084
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.011
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC               41.315      1.169     35.347      0.000
##     COMP              35.946      0.990     36.298      0.000
##     LANG              28.971      0.934     31.008      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              691.678      1.455    475.459      0.000
##     COMP             680.677      1.242    547.899      0.000
##     LANG             655.344      1.122    584.300      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC              598.097     45.727     13.080      0.000
##     COMP             331.124     31.561     10.491      0.000
##     LANG             713.795     37.496     19.037      0.000
## 
## Group G2
## 
##  F        BY
##     VOC               41.315      1.169     35.347      0.000
##     COMP              35.946      0.990     36.298      0.000
##     LANG              28.971      0.934     31.008      0.000
## 
##  Means
##     F                  0.444      0.048      9.203      0.000
## 
##  Intercepts
##     VOC              691.678      1.455    475.459      0.000
##     COMP             680.677      1.242    547.899      0.000
##     LANG             655.344      1.122    584.300      0.000
## 
##  Variances
##     F                  0.954      0.068     14.004      0.000
## 
##  Residual Variances
##     VOC              468.055     40.053     11.686      0.000
##     COMP             342.990     30.035     11.420      0.000
##     LANG             674.666     35.193     19.170      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC                0.861      0.012     74.613      0.000
##     COMP               0.892      0.011     81.126      0.000
##     LANG               0.735      0.015     49.919      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               14.407      0.311     46.337      0.000
##     COMP              16.895      0.370     45.690      0.000
##     LANG              16.629      0.338     49.158      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.259      0.020     13.072      0.000
##     COMP               0.204      0.020     10.395      0.000
##     LANG               0.460      0.022     21.227      0.000
## 
## Group G2
## 
##  F        BY
##     VOC                0.881      0.011     80.314      0.000
##     COMP               0.885      0.011     81.060      0.000
##     LANG               0.737      0.015     50.402      0.000
## 
##  Means
##     F                  0.454      0.049      9.205      0.000
## 
##  Intercepts
##     VOC               15.104      0.329     45.841      0.000
##     COMP              17.145      0.374     45.864      0.000
##     LANG              17.060      0.347     49.114      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.223      0.019     11.538      0.000
##     COMP               0.218      0.019     11.273      0.000
##     LANG               0.457      0.022     21.227      0.000
## 
## 
## R-SQUARE
## 
## Group G1
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.741      0.020     37.306      0.000
##     COMP               0.796      0.020     40.563      0.000
##     LANG               0.540      0.022     24.959      0.000
## 
## Group G2
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.777      0.019     40.157      0.000
##     COMP               0.782      0.019     40.530      0.000
##     LANG               0.543      0.022     25.201      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.318E-04
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G1
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               691.678       680.677       655.344
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.682        -0.047        -1.034
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 1.503        -0.167        -1.983
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.447        -0.037        -0.836
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2305.056
##  COMP        1485.124      1623.242
##  LANG        1196.927      1041.375      1553.086
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           16.824
##  COMP          10.127         0.835
##  LANG          -9.648       -16.882       -23.460
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.526
##  COMP           0.685         0.050
##  LANG          -0.370        -0.870        -0.856
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.162
##  COMP           0.131         0.011
##  LANG          -0.137        -0.284        -0.343
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G2
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               710.004       696.621       668.193
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -0.534         0.049         0.977
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -1.532         0.170         1.920
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -0.368         0.039         0.805
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2097.123
##  COMP        1417.355      1576.147
##  LANG        1142.310       993.856      1475.659
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            5.747
##  COMP           1.587        -2.426
##  LANG           0.816        -4.957        -4.874
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.238
##  COMP           0.142        -0.146
##  LANG           0.034        -0.248        -0.175
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.061
##  COMP           0.022        -0.034
##  LANG           0.012        -0.086        -0.074
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index     0.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## Group G1
## 
## 
## BY Statements
## 
## F        BY VOC                    0.344     0.341      0.341        0.007
## F        BY COMP                   0.003     0.022      0.022        0.001
## F        BY LANG                   0.560    -0.466     -0.466       -0.012
## 
## WITH Statements
## 
## LANG     WITH VOC                  0.003    -2.450     -2.450       -0.004
## LANG     WITH COMP                 0.344   -24.830    -24.830       -0.051
## 
## Means/Intercepts/Thresholds
## 
## [ VOC      ]                       2.462     0.682      0.682        0.014
## [ COMP     ]                       0.028    -0.047     -0.047       -0.001
## [ LANG     ]                       3.619    -1.034     -1.034       -0.026
## 
## Group G2
## 
## 
## BY Statements
## 
## F        BY VOC                    0.344    -0.644     -0.630       -0.014
## F        BY COMP                   0.003    -0.052     -0.050       -0.001
## F        BY LANG                   0.561     0.569      0.556        0.014
## 
## WITH Statements
## 
## LANG     WITH VOC                  0.020     6.543      6.543        0.012
## LANG     WITH COMP                 0.068   -10.459    -10.459       -0.022
## 
## Means/Intercepts/Thresholds
## 
## [ VOC      ]                       2.462    -1.478     -1.478       -0.032
## [ COMP     ]                       0.028     0.149      0.149        0.004
## [ LANG     ]                       3.619     1.466      1.466        0.038
## 
## 
## 
##      Beginning Time:  12:20:09
##         Ending Time:  12:20:10
##        Elapsed Time:  00:00:01
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

7.4.4 Partial invariance model

TITLE: Structural Means Modeling - 
        partial invariance
DATA: FILE IS "data\READINGBOTHGROUPS.txt";
      TYPE IS CORRELATION MEANS STDEVIATIONS;
      NOBSERVATIONS ARE 1000 1000;
      NGROUPS IS 2;
VARIABLE: NAMES ARE voc comp lang;
ANALYSIS: ESTIMATOR=ML;
MODEL: f BY voc* (1)
            comp (2)
            lang (3);
       [voc*] (i1); 
       [comp*] (i2); 
       [lang*] (i3);
       [f@0]; f@1;
MODEL G2: 
      f BY comp*;
      [comp*];
       [f*]; ! factor mean in G2 is freed
        f*; ! factor variance in G2 is freed   
OUTPUT: SAMP STDYX RES MOD(0);
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE: Structural Means Modeling -
##           partial invariance
##   DATA: FILE IS "data\READINGBOTHGROUPS.txt";
##         TYPE IS CORRELATION MEANS STDEVIATIONS;
##         NOBSERVATIONS ARE 1000 1000;
##         NGROUPS IS 2;
##   VARIABLE: NAMES ARE voc comp lang;
##   ANALYSIS: ESTIMATOR=ML;
##   MODEL: f BY voc* (1)
##               comp (2)
##               lang (3);
##          [voc*] (i1);
##          [comp*] (i2);
##          [lang*] (i3);
##          [f@0]; f@1;
##   MODEL G2:
##         f BY comp*;
##         [comp*];
##          [f*]; ! factor mean in G2 is freed
##           f*; ! factor variance in G2 is freed
##   OUTPUT: SAMP STDYX RES MOD(0);
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## Structural Means Modeling -
## partial invariance
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 2
## Number of observations
##    Group G1                                                   1000
##    Group G2                                                   1000
##    Total sample size                                          2000
## 
## Number of dependent variables                                    3
## Number of independent variables                                  0
## Number of continuous latent variables                            1
## 
## Observed dependent variables
## 
##   Continuous
##    VOC         COMP        LANG
## 
## Continuous latent variables
##    F
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\READINGBOTHGROUPS.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS FOR G1
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               692.360       680.630       654.310
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2324.204
##  COMP        1496.747      1625.702
##  LANG        1188.468      1025.519      1531.157
## 
## 
##      SAMPLE STATISTICS FOR G2
## 
## 
##            Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.470       696.670       669.170
## 
## 
##            Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2104.974
##  COMP        1420.362      1575.296
##  LANG        1144.270       989.888      1472.257
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       16
## 
## Loglikelihood
## 
##           H0 Value                      -29355.130
##           H1 Value                      -29352.796
## 
## Information Criteria
## 
##           Akaike (AIC)                   58742.259
##           Bayesian (BIC)                 58831.874
##           Sample-Size Adjusted BIC       58781.041
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                              4.668
##           Degrees of Freedom                     2
##           P-Value                           0.0969
## 
## Chi-Square Contribution From Each Group
## 
##           G1                                 2.612
##           G2                                 2.056
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.037
##           90 Percent C.I.                    0.000  0.081
##           Probability RMSEA <= .05           0.623
## 
## CFI/TLI
## 
##           CFI                                0.999
##           TLI                                0.997
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                           3103.084
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.011
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC               41.298      1.247     33.124      0.000
##     COMP              35.967      1.082     33.231      0.000
##     LANG              28.951      0.978     29.597      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC              691.731      1.489    464.517      0.000
##     COMP             680.630      1.274    534.082      0.000
##     LANG             655.380      1.141    574.509      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC              598.664     48.809     12.265      0.000
##     COMP             330.451     34.976      9.448      0.000
##     LANG             714.134     37.712     18.936      0.000
## 
## Group G2
## 
##  F        BY
##     VOC               41.298      1.247     33.124      0.000
##     COMP              35.818      1.471     24.345      0.000
##     LANG              28.951      0.978     29.597      0.000
## 
##  Means
##     F                  0.441      0.051      8.700      0.000
## 
##  Intercepts
##     VOC              691.731      1.489    464.517      0.000
##     COMP             680.860      1.557    437.325      0.000
##     LANG             655.380      1.141    574.509      0.000
## 
##  Variances
##     F                  0.958      0.077     12.414      0.000
## 
##  Residual Variances
##     VOC              465.700     42.660     10.916      0.000
##     COMP             344.898     32.607     10.577      0.000
##     LANG             674.463     35.279     19.118      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
## Group G1
## 
##  F        BY
##     VOC                0.860      0.013     67.218      0.000
##     COMP               0.892      0.013     70.342      0.000
##     LANG               0.735      0.015     47.838      0.000
## 
##  Means
##     F                  0.000      0.000    999.000    999.000
## 
##  Intercepts
##     VOC               14.410      0.316     45.575      0.000
##     COMP              16.889      0.379     44.565      0.000
##     LANG              16.634      0.345     48.205      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.260      0.022     11.797      0.000
##     COMP               0.203      0.023      8.984      0.000
##     LANG               0.460      0.023     20.379      0.000
## 
## Group G2
## 
##  F        BY
##     VOC                0.882      0.012     73.628      0.000
##     COMP               0.884      0.012     71.039      0.000
##     LANG               0.737      0.015     48.978      0.000
## 
##  Means
##     F                  0.451      0.052      8.716      0.000
## 
##  Intercepts
##     VOC               15.097      0.333     45.278      0.000
##     COMP              17.163      0.390     44.048      0.000
##     LANG              17.051      0.354     48.156      0.000
## 
##  Variances
##     F                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     VOC                0.222      0.021     10.495      0.000
##     COMP               0.219      0.022      9.969      0.000
##     LANG               0.457      0.022     20.573      0.000
## 
## 
## R-SQUARE
## 
## Group G1
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.740      0.022     33.609      0.000
##     COMP               0.797      0.023     35.171      0.000
##     LANG               0.540      0.023     23.919      0.000
## 
## Group G2
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     VOC                0.778      0.021     36.814      0.000
##     COMP               0.781      0.022     35.520      0.000
##     LANG               0.543      0.022     24.489      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.421E-04
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G1
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               691.731       680.630       655.380
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.629         0.000        -1.070
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 1.947         0.005        -2.240
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                 0.413         0.000        -0.865
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2304.212
##  COMP        1485.375      1624.076
##  LANG        1195.641      1041.293      1552.315
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC           17.668
##  COMP           9.875         0.001
##  LANG          -8.361       -16.799       -22.689
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.679
##  COMP           0.679         0.013
##  LANG          -0.916        -0.870        -0.934
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.170
##  COMP           0.127         0.000
##  LANG          -0.119        -0.283        -0.332
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED) FOR G2
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##               709.959       696.670       668.159
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -0.489         0.000         1.011
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -2.068        -0.031         2.168
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               VOC           COMP          LANG
##               ________      ________      ________
##                -0.338         0.000         0.834
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC         2099.319
##  COMP        1416.837      1573.720
##  LANG        1145.216       993.245      1477.294
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            3.551
##  COMP           2.105         0.001
##  LANG          -2.090        -4.347        -6.509
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.192
##  COMP           0.203         0.010
##  LANG          -0.182        -0.220        -0.262
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               VOC           COMP          LANG
##               ________      ________      ________
##  VOC            0.038
##  COMP           0.029         0.000
##  LANG          -0.032        -0.076        -0.099
## 
## 
## MODEL MODIFICATION INDICES
## 
## NOTE:  Modification indices for direct effects of observed dependent variables
## regressed on covariates may not be included.  To include these, request
## MODINDICES (ALL).
## 
## Minimum M.I. value for printing the modification index     0.000
## 
##                                    M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C.
## Group G1
## 
## 
## BY Statements
## 
## F        BY VOC                    0.636     0.314      0.314        0.007
## F        BY LANG                   0.636    -0.439     -0.439       -0.011
## 
## WITH Statements
## 
## LANG     WITH COMP                 0.635   -43.871    -43.871       -0.090
## 
## Means/Intercepts/Thresholds
## 
## [ VOC      ]                       4.565     0.629      0.629        0.013
## [ LANG     ]                       4.565    -1.070     -1.070       -0.027
## 
## Group G2
## 
## 
## BY Statements
## 
## F        BY VOC                    0.636    -1.426     -1.396       -0.030
## F        BY LANG                   0.636     0.781      0.764        0.020
## 
## WITH Statements
## 
## LANG     WITH COMP                 0.046   -11.228    -11.228       -0.023
## 
## Means/Intercepts/Thresholds
## 
## [ VOC      ]                       4.566    -3.716     -3.716       -0.081
## [ LANG     ]                       4.566     1.976      1.976        0.051
## 
## 
## 
##      Beginning Time:  12:20:10
##         Ending Time:  12:20:10
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen