Chapter 8 Latent Growth Models

8.1 Syntax - R

library(lavaan); library(semPlot)

8.1.1 Linear latent growth models without means

LGROWTH.lower <- '
40.628 
37.741 53.568
40.052 48.500 60.778
50.643 63.169 70.200 107.869'
LGROWTH.cov <- getCov(LGROWTH.lower, names = paste("Y", 1:4, sep=""))
lgm.linear.model <- '
    F1 =~ 1*Y1 + 1*Y2 + 1*Y3 + 1*Y4
    F2 =~ 0*Y1 + 1*Y2 + 3*Y3 + 5*Y4
    F1 ~~ F2'
lgm.linear.fit <- cfa(lgm.linear.model, sample.cov = LGROWTH.cov, sample.nobs = 204)
summary(lgm.linear.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE) 
## lavaan 0.6-8 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
##                                                       
##   Number of observations                           204
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                10.114
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.018
## 
## Model Test Baseline Model:
## 
##   Test statistic                               824.610
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991
##   Tucker-Lewis Index (TLI)                       0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2428.904
##   Loglikelihood unrestricted model (H1)      -2423.846
##                                                       
##   Akaike (AIC)                                4871.807
##   Bayesian (BIC)                              4895.034
##   Sample-size adjusted Bayesian (BIC)         4872.856
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.108
##   90 Percent confidence interval - lower         0.040
##   90 Percent confidence interval - upper         0.184
##   P-value RMSEA <= 0.05                          0.075
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.056
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                1.000                               5.712    0.889
##     Y2                1.000                               5.712    0.816
##     Y3                1.000                               5.712    0.704
##     Y4                1.000                               5.712    0.570
##   F2 =~                                                                 
##     Y1                0.000                               0.000    0.000
##     Y2                1.000                               0.855    0.122
##     Y3                3.000                               2.566    0.316
##     Y4                5.000                               4.276    0.427
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                3.322    0.575    5.773    0.000    0.680    0.680
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1                8.657    1.373    6.303    0.000    8.657    0.210
##    .Y2                9.001    1.174    7.665    0.000    9.001    0.184
##    .Y3                6.684    1.164    5.742    0.000    6.684    0.102
##    .Y4               16.322    2.673    6.107    0.000   16.322    0.162
##     F1               32.630    3.806    8.574    0.000    1.000    1.000
##     F2                0.731    0.168    4.341    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.790
##     Y2                0.816
##     Y3                0.898
##     Y4                0.838
# If the "growth" function is used, the latent factor means are also estimated (although for this example, there is no information on means).
lgm.linear.fit2 <- growth(lgm.linear.model, sample.cov = LGROWTH.cov, sample.nobs = 204)
summary(lgm.linear.fit2, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE) 
## lavaan 0.6-8 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##                                                       
##   Number of observations                           204
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                10.114
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.072
## 
## Model Test Baseline Model:
## 
##   Test statistic                               824.610
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.994
##   Tucker-Lewis Index (TLI)                       0.993
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2428.904
##   Loglikelihood unrestricted model (H1)      -2423.846
##                                                       
##   Akaike (AIC)                                4875.807
##   Bayesian (BIC)                              4905.670
##   Sample-size adjusted Bayesian (BIC)         4877.156
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.134
##   P-value RMSEA <= 0.05                          0.242
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.047
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                1.000                               5.712    0.889
##     Y2                1.000                               5.712    0.816
##     Y3                1.000                               5.712    0.704
##     Y4                1.000                               5.712    0.570
##   F2 =~                                                                 
##     Y1                0.000                               0.000    0.000
##     Y2                1.000                               0.855    0.122
##     Y3                3.000                               2.566    0.316
##     Y4                5.000                               4.276    0.427
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                3.322    0.575    5.773    0.000    0.680    0.680
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1                0.000                               0.000    0.000
##    .Y2                0.000                               0.000    0.000
##    .Y3                0.000                               0.000    0.000
##    .Y4                0.000                               0.000    0.000
##     F1                0.000    0.432    0.000    1.000    0.000    0.000
##     F2                0.000    0.086    0.000    1.000    0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1                8.657    1.373    6.303    0.000    8.657    0.210
##    .Y2                9.001    1.174    7.665    0.000    9.001    0.184
##    .Y3                6.684    1.164    5.742    0.000    6.684    0.102
##    .Y4               16.322    2.673    6.107    0.000   16.322    0.162
##     F1               32.630    3.806    8.574    0.000    1.000    1.000
##     F2                0.731    0.168    4.341    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.790
##     Y2                0.816
##     Y3                0.898
##     Y4                0.838

8.1.2 Linear latent growth models with means

8.1.2.1 use the cfa() function

LGROWTH.means <- c(18.304, 25.819, 35.255, 46.593)
lgm.linear.with.mean.model <- '
    F1 =~ 1*Y1 + 1*Y2 + 1*Y3 + 1*Y4
    F2 =~ 0*Y1 + 1*Y2 + 3*Y3 + 5*Y4
    F1 ~~ F2
    F1 ~ 1
    F2 ~ 1
    Y1 ~ 0*1
    Y2 ~ 0*1
    Y3 ~ 0*1
    Y4 ~ 0*1'
lgm.linear.with.mean.fit <- cfa(lgm.linear.with.mean.model, sample.cov = LGROWTH.cov, sample.mean = LGROWTH.means, sample.nobs = 204)
summary(lgm.linear.with.mean.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE) 
## lavaan 0.6-8 ended normally after 75 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##                                                       
##   Number of observations                           204
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                56.800
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               824.610
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.937
##   Tucker-Lewis Index (TLI)                       0.924
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2452.247
##   Loglikelihood unrestricted model (H1)      -2423.846
##                                                       
##   Akaike (AIC)                                4922.493
##   Bayesian (BIC)                              4952.356
##   Sample-size adjusted Bayesian (BIC)         4923.841
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.225
##   90 Percent confidence interval - lower         0.175
##   90 Percent confidence interval - upper         0.280
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.072
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                1.000                               5.587    0.868
##     Y2                1.000                               5.587    0.784
##     Y3                1.000                               5.587    0.693
##     Y4                1.000                               5.587    0.557
##   F2 =~                                                                 
##     Y1                0.000                               0.000    0.000
##     Y2                1.000                               0.805    0.113
##     Y3                3.000                               2.415    0.300
##     Y4                5.000                               4.025    0.401
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                3.599    0.586    6.140    0.000    0.800    0.800
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1               19.029    0.430   44.287    0.000    3.406    3.406
##     F2                5.499    0.086   63.760    0.000    6.832    6.832
##    .Y1                0.000                               0.000    0.000
##    .Y2                0.000                               0.000    0.000
##    .Y3                0.000                               0.000    0.000
##    .Y4                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1               10.236    1.572    6.513    0.000   10.236    0.247
##    .Y2               11.711    1.442    8.119    0.000   11.711    0.231
##    .Y3                6.323    1.193    5.302    0.000    6.323    0.097
##    .Y4               17.238    2.727    6.321    0.000   17.238    0.171
##     F1               31.218    3.793    8.230    0.000    1.000    1.000
##     F2                0.648    0.172    3.766    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.753
##     Y2                0.769
##     Y3                0.903
##     Y4                0.829

8.1.2.2 use the growth() function

Technically, the growth() function is almost identical to the sem() function. But a mean structure is automatically assumed, and the observed intercepts are fixed to zero by default, while the latent variable intercepts/means are freely estimated.

lgm.linear.model <- '
    F1 =~ 1*Y1 + 1*Y2 + 1*Y3 + 1*Y4
    F2 =~ 0*Y1 + 1*Y2 + 3*Y3 + 5*Y4
    F1 ~~ F2'
lgm.linear.with.mean.fit2 <- growth(lgm.linear.model, sample.cov = LGROWTH.cov, sample.mean = LGROWTH.means, sample.nobs = 204)
summary(lgm.linear.with.mean.fit2, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE) 
## lavaan 0.6-8 ended normally after 75 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
##                                                       
##   Number of observations                           204
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                56.800
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               824.610
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.937
##   Tucker-Lewis Index (TLI)                       0.924
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2452.247
##   Loglikelihood unrestricted model (H1)      -2423.846
##                                                       
##   Akaike (AIC)                                4922.493
##   Bayesian (BIC)                              4952.356
##   Sample-size adjusted Bayesian (BIC)         4923.841
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.225
##   90 Percent confidence interval - lower         0.175
##   90 Percent confidence interval - upper         0.280
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.072
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                1.000                               5.587    0.868
##     Y2                1.000                               5.587    0.784
##     Y3                1.000                               5.587    0.693
##     Y4                1.000                               5.587    0.557
##   F2 =~                                                                 
##     Y1                0.000                               0.000    0.000
##     Y2                1.000                               0.805    0.113
##     Y3                3.000                               2.415    0.300
##     Y4                5.000                               4.025    0.401
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                3.599    0.586    6.140    0.000    0.800    0.800
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1                0.000                               0.000    0.000
##    .Y2                0.000                               0.000    0.000
##    .Y3                0.000                               0.000    0.000
##    .Y4                0.000                               0.000    0.000
##     F1               19.029    0.430   44.287    0.000    3.406    3.406
##     F2                5.499    0.086   63.760    0.000    6.832    6.832
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Y1               10.236    1.572    6.513    0.000   10.236    0.247
##    .Y2               11.711    1.442    8.119    0.000   11.711    0.231
##    .Y3                6.323    1.193    5.302    0.000    6.323    0.097
##    .Y4               17.238    2.727    6.321    0.000   17.238    0.171
##     F1               31.218    3.793    8.230    0.000    1.000    1.000
##     F2                0.648    0.172    3.766    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.753
##     Y2                0.769
##     Y3                0.903
##     Y4                0.829
semPaths(lgm.linear.with.mean.fit2)

8.1.3 Linear latent growth models with predictors

LGROWTHP.lower <- '
40.628
37.741 53.568
40.052 48.500 60.778
50.643 63.169 70.200 107.869
8.949 10.493 9.430 12.843 7.290'

LGROWTHP.cov <- getCov(LGROWTHP.lower, names = c(paste("Y", 1:4, sep=""), "X1"))
lgm.linear.with.predictor.model <- '
    F1 =~ 1*Y1 + 1*Y2 + 1*Y3 + 1*Y4
    F2 =~ 0*Y1 + 1*Y2 + 3*Y3 + 5*Y4
    F1 ~ X1
    F2 ~ X1
    F1 ~~ F2
    X1 ~~ X1'
lgm.linear.with.predictor.fit <- cfa(lgm.linear.with.predictor.model, sample.cov = LGROWTHP.cov, sample.nobs = 204)
summary(lgm.linear.with.predictor.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE) 
## lavaan 0.6-8 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##                                                       
##   Number of observations                           204
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                14.308
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.014
## 
## Model Test Baseline Model:
## 
##   Test statistic                               900.650
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990
##   Tucker-Lewis Index (TLI)                       0.979
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2884.566
##   Loglikelihood unrestricted model (H1)      -2877.412
##                                                       
##   Akaike (AIC)                                5789.132
##   Bayesian (BIC)                              5822.313
##   Sample-size adjusted Bayesian (BIC)         5790.630
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.096
##   90 Percent confidence interval - lower         0.039
##   90 Percent confidence interval - upper         0.155
##   P-value RMSEA <= 0.05                          0.083
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                1.000                               5.721    0.889
##     Y2                1.000                               5.721    0.819
##     Y3                1.000                               5.721    0.704
##     Y4                1.000                               5.721    0.570
##   F2 =~                                                                 
##     Y1                0.000                               0.000    0.000
##     Y2                1.000                               0.850    0.122
##     Y3                3.000                               2.550    0.314
##     Y4                5.000                               4.250    0.424
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~                                                                  
##     X1                1.248    0.135    9.277    0.000    0.218    0.588
##   F2 ~                                                                  
##     X1                0.067    0.032    2.118    0.034    0.079    0.212
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .F1 ~~                                                                 
##    .F2                2.716    0.482    5.633    0.000    0.706    0.706
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     X1                7.254    0.718   10.100    0.000    7.254    1.000
##    .Y1                8.725    1.331    6.553    0.000    8.725    0.210
##    .Y2                8.718    1.128    7.731    0.000    8.718    0.179
##    .Y3                6.830    1.173    5.824    0.000    6.830    0.103
##    .Y4               16.558    2.692    6.151    0.000   16.558    0.165
##    .F1               21.429    2.709    7.909    0.000    0.655    0.655
##    .F2                0.690    0.165    4.177    0.000    0.955    0.955
## 
## R-Square:
##                    Estimate
##     Y1                0.790
##     Y2                0.821
##     Y3                0.897
##     Y4                0.835
##     F1                0.345
##     F2                0.045
semPaths(lgm.linear.with.predictor.fit)

8.2 Syntax - Mplus

8.2.1 Linear latent growth models without means

TITLE:  LATENT GROWTH MODEL -- LINEAR
DATA:  FILE IS "data\LGROWTH.txt";
       TYPE IS COVARIANCE;
       NOBSERVATIONS IS 204;
VARIABLE:  NAMES ARE Y1-Y4;
MODEL:  F1 BY Y1@1 Y2@1 Y3@1 Y4@1;
        F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
        F1 WITH F2;
OUTPUT:  SAMP STDYX RES;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE:  LATENT GROWTH MODEL -- LINEAR
##   DATA:  FILE IS "data\LGROWTH.txt";
##          TYPE IS COVARIANCE;
##          NOBSERVATIONS IS 204;
##   VARIABLE:  NAMES ARE Y1-Y4;
##   MODEL:  F1 BY Y1@1 Y2@1 Y3@1 Y4@1;
##           F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
##           F1 WITH F2;
##   OUTPUT:  SAMP STDYX RES;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## LATENT GROWTH MODEL -- LINEAR
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         204
## 
## Number of dependent variables                                    4
## Number of independent variables                                  0
## Number of continuous latent variables                            2
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3          Y4
## 
## Continuous latent variables
##    F1          F2
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\LGROWTH.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            40.628
##  Y2            37.741        53.568
##  Y3            40.052        48.500        60.778
##  Y4            50.643        63.169        70.200       107.869
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        7
## 
## Loglikelihood
## 
##           H0 Value                       -2428.904
##           H1 Value                       -2423.846
## 
## Information Criteria
## 
##           Akaike (AIC)                    4871.807
##           Bayesian (BIC)                  4895.034
##           Sample-Size Adjusted BIC        4872.856
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             10.114
##           Degrees of Freedom                     3
##           P-Value                           0.0176
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.108
##           90 Percent C.I.                    0.040  0.184
##           Probability RMSEA <= .05           0.075
## 
## CFI/TLI
## 
##           CFI                                0.991
##           TLI                                0.983
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            824.610
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.056
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 1.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 1.000      0.000    999.000    999.000
##     Y4                 1.000      0.000    999.000    999.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 3.000      0.000    999.000    999.000
##     Y4                 5.000      0.000    999.000    999.000
## 
##  F1       WITH
##     F2                 3.323      0.575      5.774      0.000
## 
##  Variances
##     F1                32.629      3.806      8.574      0.000
##     F2                 0.732      0.169      4.341      0.000
## 
##  Residual Variances
##     Y1                 8.656      1.373      6.303      0.000
##     Y2                 9.000      1.174      7.665      0.000
##     Y3                 6.685      1.164      5.742      0.000
##     Y4                16.322      2.673      6.107      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 0.889      0.020     45.491      0.000
##     Y2                 0.816      0.020     41.138      0.000
##     Y3                 0.704      0.026     27.315      0.000
##     Y4                 0.570      0.028     20.445      0.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.122      0.014      8.540      0.000
##     Y3                 0.316      0.034      9.426      0.000
##     Y4                 0.427      0.043      9.814      0.000
## 
##  F1       WITH
##     F2                 0.680      0.131      5.195      0.000
## 
##  Variances
##     F1                 1.000      0.000    999.000    999.000
##     F2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.210      0.035      6.034      0.000
##     Y2                 0.184      0.026      7.167      0.000
##     Y3                 0.102      0.019      5.411      0.000
##     Y4                 0.162      0.028      5.822      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.790      0.035     22.745      0.000
##     Y2                 0.816      0.026     31.856      0.000
##     Y3                 0.898      0.019     47.879      0.000
##     Y4                 0.838      0.028     30.017      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.989E-01
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            41.286
##  Y2            35.952        49.006
##  Y3            42.597        48.114        65.834
##  Y4            49.242        56.223        70.184       100.467
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.857
##  Y2             1.604         4.299
##  Y3            -2.741         0.148        -5.354
##  Y4             1.152         6.636        -0.328         6.874
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.809
##  Y2             1.289         1.474
##  Y3           999.000         0.104       999.000
##  Y4             0.497         1.906       999.000         1.429
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.214
##  Y2             0.384         0.815
##  Y3            -0.617         0.028        -0.894
##  Y4             0.198         0.964        -0.044         0.647
## 
## 
##      Beginning Time:  12:20:11
##         Ending Time:  12:20:11
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

8.2.2 Linear latent growth models with means

8.2.2.1 use factor analysis to specify growth models

TITLE:  LATENT GROWTH MODEL - LINEAR WITH MEANS
DATA:  FILE IS "data\LGROWTHM.txt";
       TYPE IS COVARIANCE MEANS;
       NOBSERVATIONS IS 204;
VARIABLE:  NAMES ARE Y1-Y4;
MODEL:  F1 BY Y1@1 Y2@1 Y3@1 Y4@1;
        F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
        F1 WITH F2;
        [F1* F2* Y1-Y4@0];
OUTPUT:  SAMP STDYX RES;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE:  LATENT GROWTH MODEL - LINEAR WITH MEANS
##   DATA:  FILE IS "data\LGROWTHM.txt";
##          TYPE IS COVARIANCE MEANS;
##          NOBSERVATIONS IS 204;
##   VARIABLE:  NAMES ARE Y1-Y4;
##   MODEL:  F1 BY Y1@1 Y2@1 Y3@1 Y4@1;
##           F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
##           F1 WITH F2;
##           [F1* F2* Y1-Y4@0];
##   OUTPUT:  SAMP STDYX RES;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## LATENT GROWTH MODEL - LINEAR WITH MEANS
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         204
## 
## Number of dependent variables                                    4
## Number of independent variables                                  0
## Number of continuous latent variables                            2
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3          Y4
## 
## Continuous latent variables
##    F1          F2
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\LGROWTHM.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                18.304        25.819        35.255        46.593
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            40.628
##  Y2            37.741        53.568
##  Y3            40.052        48.500        60.778
##  Y4            50.643        63.169        70.200       107.869
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        9
## 
## Loglikelihood
## 
##           H0 Value                       -2452.247
##           H1 Value                       -2423.846
## 
## Information Criteria
## 
##           Akaike (AIC)                    4922.493
##           Bayesian (BIC)                  4952.356
##           Sample-Size Adjusted BIC        4923.841
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             56.800
##           Degrees of Freedom                     5
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.225
##           90 Percent C.I.                    0.175  0.280
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.937
##           TLI                                0.924
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            824.610
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.072
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 1.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 1.000      0.000    999.000    999.000
##     Y4                 1.000      0.000    999.000    999.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 3.000      0.000    999.000    999.000
##     Y4                 5.000      0.000    999.000    999.000
## 
##  F1       WITH
##     F2                 3.599      0.586      6.140      0.000
## 
##  Means
##     F1                19.029      0.430     44.287      0.000
##     F2                 5.499      0.086     63.760      0.000
## 
##  Intercepts
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.000      0.000    999.000    999.000
##     Y3                 0.000      0.000    999.000    999.000
##     Y4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     F1                31.218      3.793      8.230      0.000
##     F2                 0.648      0.172      3.766      0.000
## 
##  Residual Variances
##     Y1                10.236      1.572      6.513      0.000
##     Y2                11.711      1.442      8.119      0.000
##     Y3                 6.323      1.193      5.302      0.000
##     Y4                17.238      2.727      6.321      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 0.868      0.023     38.288      0.000
##     Y2                 0.784      0.023     34.541      0.000
##     Y3                 0.693      0.027     26.078      0.000
##     Y4                 0.557      0.028     19.571      0.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.113      0.015      7.466      0.000
##     Y3                 0.300      0.037      8.163      0.000
##     Y4                 0.401      0.048      8.386      0.000
## 
##  F1       WITH
##     F2                 0.800      0.163      4.923      0.000
## 
##  Means
##     F1                 3.406      0.221     15.430      0.000
##     F2                 6.832      0.913      7.480      0.000
## 
##  Intercepts
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.000      0.000    999.000    999.000
##     Y3                 0.000      0.000    999.000    999.000
##     Y4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     F1                 1.000      0.000    999.000    999.000
##     F2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.247      0.039      6.277      0.000
##     Y2                 0.231      0.030      7.785      0.000
##     Y3                 0.097      0.019      5.057      0.000
##     Y4                 0.171      0.028      6.032      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.753      0.039     19.144      0.000
##     Y2                 0.769      0.030     25.969      0.000
##     Y3                 0.903      0.019     46.899      0.000
##     Y4                 0.829      0.028     29.185      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.461E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                19.029        24.529        35.528        46.527
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -0.725         1.290        -0.273         0.066
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -6.231         5.652       999.000         0.251
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -1.630         2.524        -0.501         0.092
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            41.454
##  Y2            34.817        50.776
##  Y3            42.016        47.559        64.968
##  Y4            49.214        56.053        69.731       100.646
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -1.025
##  Y2             2.739         2.530
##  Y3            -2.160         0.704        -4.488
##  Y4             1.181         6.806         0.125         6.694
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.929
##  Y2             2.069         0.882
##  Y3           999.000         0.455       999.000
##  Y4             0.492         1.917         0.338         1.380
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.256
##  Y2             0.655         0.479
##  Y3            -0.486         0.135        -0.749
##  Y4             0.203         0.988         0.017         0.630
## 
## 
##      Beginning Time:  12:20:12
##         Ending Time:  12:20:12
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

8.2.2.2 use the | symbol to specify growth models

TITLE:  LATENT GROWTH MODEL - LINEAR WITH MEANS
DATA:  FILE IS "data\LGROWTHM.txt";
       TYPE IS COVARIANCE MEANS;
       NOBSERVATIONS IS 204;
VARIABLE:  NAMES ARE Y1-Y4;
MODEL: i s | Y1@0 Y2@1 Y3@3 Y4@5;
OUTPUT:  SAMP STDYX RES;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE:  LATENT GROWTH MODEL - LINEAR WITH MEANS
##   DATA:  FILE IS "data\LGROWTHM.txt";
##          TYPE IS COVARIANCE MEANS;
##          NOBSERVATIONS IS 204;
##   VARIABLE:  NAMES ARE Y1-Y4;
##   MODEL: i s | Y1@0 Y2@1 Y3@3 Y4@5;
##   OUTPUT:  SAMP STDYX RES;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## LATENT GROWTH MODEL - LINEAR WITH MEANS
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         204
## 
## Number of dependent variables                                    4
## Number of independent variables                                  0
## Number of continuous latent variables                            2
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3          Y4
## 
## Continuous latent variables
##    I           S
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\LGROWTHM.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                18.304        25.819        35.255        46.593
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            40.628
##  Y2            37.741        53.568
##  Y3            40.052        48.500        60.778
##  Y4            50.643        63.169        70.200       107.869
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                        9
## 
## Loglikelihood
## 
##           H0 Value                       -2452.247
##           H1 Value                       -2423.846
## 
## Information Criteria
## 
##           Akaike (AIC)                    4922.493
##           Bayesian (BIC)                  4952.356
##           Sample-Size Adjusted BIC        4923.841
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             56.800
##           Degrees of Freedom                     5
##           P-Value                           0.0000
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.225
##           90 Percent C.I.                    0.175  0.280
##           Probability RMSEA <= .05           0.000
## 
## CFI/TLI
## 
##           CFI                                0.937
##           TLI                                0.924
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            824.610
##           Degrees of Freedom                     6
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.072
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  I        |
##     Y1                 1.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 1.000      0.000    999.000    999.000
##     Y4                 1.000      0.000    999.000    999.000
## 
##  S        |
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 3.000      0.000    999.000    999.000
##     Y4                 5.000      0.000    999.000    999.000
## 
##  S        WITH
##     I                  3.599      0.586      6.140      0.000
## 
##  Means
##     I                 19.029      0.430     44.287      0.000
##     S                  5.499      0.086     63.760      0.000
## 
##  Intercepts
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.000      0.000    999.000    999.000
##     Y3                 0.000      0.000    999.000    999.000
##     Y4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     I                 31.218      3.793      8.230      0.000
##     S                  0.648      0.172      3.766      0.000
## 
##  Residual Variances
##     Y1                10.236      1.572      6.513      0.000
##     Y2                11.711      1.442      8.119      0.000
##     Y3                 6.323      1.193      5.302      0.000
##     Y4                17.238      2.727      6.321      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  I        |
##     Y1                 0.868      0.023     38.288      0.000
##     Y2                 0.784      0.023     34.541      0.000
##     Y3                 0.693      0.027     26.078      0.000
##     Y4                 0.557      0.028     19.571      0.000
## 
##  S        |
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.113      0.015      7.466      0.000
##     Y3                 0.300      0.037      8.163      0.000
##     Y4                 0.401      0.048      8.386      0.000
## 
##  S        WITH
##     I                  0.800      0.163      4.923      0.000
## 
##  Means
##     I                  3.406      0.221     15.430      0.000
##     S                  6.832      0.913      7.480      0.000
## 
##  Intercepts
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.000      0.000    999.000    999.000
##     Y3                 0.000      0.000    999.000    999.000
##     Y4                 0.000      0.000    999.000    999.000
## 
##  Variances
##     I                  1.000      0.000    999.000    999.000
##     S                  1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.247      0.039      6.277      0.000
##     Y2                 0.231      0.030      7.785      0.000
##     Y3                 0.097      0.019      5.057      0.000
##     Y4                 0.171      0.028      6.032      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.753      0.039     19.144      0.000
##     Y2                 0.769      0.030     25.969      0.000
##     Y3                 0.903      0.019     46.899      0.000
##     Y4                 0.829      0.028     29.185      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.461E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                19.029        24.529        35.528        46.527
## 
## 
##            Residuals for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -0.725         1.290        -0.273         0.066
## 
## 
##            Standardized Residuals (z-scores) for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -6.231         5.652       999.000         0.251
## 
## 
##            Normalized Residuals for Means/Intercepts/Thresholds
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##                -1.630         2.524        -0.501         0.092
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            41.454
##  Y2            34.817        50.776
##  Y3            42.016        47.559        64.968
##  Y4            49.214        56.053        69.731       100.646
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -1.025
##  Y2             2.739         2.530
##  Y3            -2.160         0.704        -4.488
##  Y4             1.181         6.806         0.125         6.694
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.929
##  Y2             2.069         0.882
##  Y3           999.000         0.455       999.000
##  Y4             0.492         1.917         0.338         1.380
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4
##               ________      ________      ________      ________
##  Y1            -0.256
##  Y2             0.655         0.479
##  Y3            -0.486         0.135        -0.749
##  Y4             0.203         0.988         0.017         0.630
## 
## 
##      Beginning Time:  12:20:12
##         Ending Time:  12:20:12
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

8.2.3 Linear latent growth models with predictors

TITLE:  LATENT GROWTH MODEL - LINEAR WITH PREDICTOR
DATA:  FILE IS "data\LGROWTHP.txt";
       TYPE IS COVARIANCE;
       NOBSERVATIONS IS 204;
VARIABLE:  NAMES ARE Y1-Y4 X1;
MODEL:  F1 BY Y1-Y4@1;
        F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
        F1 F2 ON X1;
        F1 WITH F2;
        X1*;
OUTPUT:  SAMP STDYX RES;
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:20 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE:  LATENT GROWTH MODEL - LINEAR WITH PREDICTOR
##   DATA:  FILE IS "data\LGROWTHP.txt";
##          TYPE IS COVARIANCE;
##          NOBSERVATIONS IS 204;
##   VARIABLE:  NAMES ARE Y1-Y4 X1;
##   MODEL:  F1 BY Y1-Y4@1;
##           F2 BY Y1@0 Y2@1 Y3@3 Y4@5;
##           F1 F2 ON X1;
##           F1 WITH F2;
##           X1*;
##   OUTPUT:  SAMP STDYX RES;
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## LATENT GROWTH MODEL - LINEAR WITH PREDICTOR
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         204
## 
## Number of dependent variables                                    4
## Number of independent variables                                  1
## Number of continuous latent variables                            2
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3          Y4
## 
## Observed independent variables
##    X1
## 
## Continuous latent variables
##    F1          F2
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\LGROWTHP.txt
## 
## Input data format  FREE
## 
## 
## SAMPLE STATISTICS
## 
## 
##      SAMPLE STATISTICS
## 
## 
##            Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4            X1
##               ________      ________      ________      ________      ________
##  Y1            40.628
##  Y2            37.741        53.568
##  Y3            40.052        48.500        60.778
##  Y4            50.643        63.169        70.200       107.869
##  X1             8.949        10.493         9.430        12.843         7.290
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       10
## 
## Loglikelihood
## 
##           H0 Value                       -2884.566
##           H1 Value                       -2877.412
## 
## Information Criteria
## 
##           Akaike (AIC)                    5789.132
##           Bayesian (BIC)                  5822.313
##           Sample-Size Adjusted BIC        5790.630
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             14.308
##           Degrees of Freedom                     5
##           P-Value                           0.0138
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.096
##           90 Percent C.I.                    0.039  0.155
##           Probability RMSEA <= .05           0.083
## 
## CFI/TLI
## 
##           CFI                                0.990
##           TLI                                0.979
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            900.650
##           Degrees of Freedom                    10
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.051
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 1.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 1.000      0.000    999.000    999.000
##     Y4                 1.000      0.000    999.000    999.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 1.000      0.000    999.000    999.000
##     Y3                 3.000      0.000    999.000    999.000
##     Y4                 5.000      0.000    999.000    999.000
## 
##  F1       ON
##     X1                 1.248      0.135      9.277      0.000
## 
##  F2       ON
##     X1                 0.067      0.032      2.118      0.034
## 
##  F1       WITH
##     F2                 2.716      0.482      5.633      0.000
## 
##  Variances
##     X1                 7.254      0.718     10.100      0.000
## 
##  Residual Variances
##     Y1                 8.725      1.331      6.553      0.000
##     Y2                 8.718      1.128      7.731      0.000
##     Y3                 6.830      1.173      5.824      0.000
##     Y4                16.558      2.692      6.151      0.000
##     F1                21.430      2.709      7.909      0.000
##     F2                 0.690      0.165      4.177      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 0.889      0.019     46.560      0.000
##     Y2                 0.819      0.020     41.766      0.000
##     Y3                 0.704      0.026     27.395      0.000
##     Y4                 0.570      0.028     20.500      0.000
## 
##  F2       BY
##     Y1                 0.000      0.000    999.000    999.000
##     Y2                 0.122      0.014      8.453      0.000
##     Y3                 0.314      0.034      9.332      0.000
##     Y4                 0.424      0.044      9.714      0.000
## 
##  F1       ON
##     X1                 0.587      0.052     11.361      0.000
## 
##  F2       ON
##     X1                 0.212      0.099      2.139      0.032
## 
##  F1       WITH
##     F2                 0.706      0.150      4.717      0.000
## 
##  Variances
##     X1                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.210      0.034      6.207      0.000
##     Y2                 0.179      0.025      7.151      0.000
##     Y3                 0.103      0.019      5.478      0.000
##     Y4                 0.165      0.028      5.859      0.000
##     F1                 0.655      0.061     10.778      0.000
##     F2                 0.955      0.042     22.637      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.790      0.034     23.280      0.000
##     Y2                 0.821      0.025     32.888      0.000
##     Y3                 0.897      0.019     47.456      0.000
##     Y4                 0.835      0.028     29.727      0.000
## 
##      Latent                                         Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     F1                 0.345      0.061      5.680      0.000
##     F2                 0.045      0.042      1.070      0.285
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.530E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
## RESIDUAL OUTPUT
## 
## 
##      ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)
## 
## 
##            Model Estimated Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4            X1
##               ________      ________      ________      ________      ________
##  Y1            41.450
##  Y2            36.048        48.811
##  Y3            42.694        48.184        65.994
##  Y4            49.340        56.275        70.144       100.572
##  X1             9.052         9.538        10.511        11.483         7.254
## 
## 
##            Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4            X1
##               ________      ________      ________      ________      ________
##  Y1            -1.021
##  Y2             1.508         4.494
##  Y3            -2.838         0.078        -5.514
##  Y4             1.055         6.585        -0.289         6.768
##  X1            -0.147         0.903        -1.127         1.297         0.000
## 
## 
##            Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr
##               Y1            Y2            Y3            Y4            X1
##               ________      ________      ________      ________      ________
##  Y1            -0.973
##  Y2             1.232         1.535
##  Y3           999.000         0.056       999.000
##  Y4             0.457         1.897       999.000         1.409
##  X1            -0.550         1.346       999.000         1.618         0.011
## 
## 
##            Normalized Residuals for Covariances/Correlations/Residual Correlations
##               Y1            Y2            Y3            Y4            X1
##               ________      ________      ________      ________      ________
##  Y1            -0.255
##  Y2             0.361         0.851
##  Y3            -0.638         0.015        -0.921
##  Y4             0.182         0.956        -0.039         0.637
##  X1            -0.109         0.580        -0.701         0.604         0.000
## 
## 
##      Beginning Time:  12:20:12
##         Ending Time:  12:20:12
##        Elapsed Time:  00:00:00
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

8.2.4 From Wang & Su (2013)

8.2.4.1 measurement invariance over time

TITLE: MEASUREMENT INVARIANCE OVER TIME
DATA: FILE IS "data\NELSSelfConcept3waves.dat";
      FORMAT IS F7 F4 2F2 F11.4 39F2;

VARIABLE: NAMES ARE id status race gender weight 
          byconf1 byconf2  byconf3  byconf4  byconf5  byconf6  byconf7  
          byloc1  byloc2  byloc3  byloc4  byloc5  byloc6  
          f1conf1 f1conf2  f1conf3 f1conf4  f1conf5  f1conf6  f1conf7 
          f1loc1 f1loc2 f1loc3  f1loc4  f1loc5  f1loc6  
          f2conf1 f2conf2  f2conf3  f2conf4 f2conf5 f2conf6 f2conf7  
          f2loc1   f2loc2  f2loc3 f2loc4 f2loc5 f2loc6;
          USEVARIABLES ARE  byconf1-byconf4  byloc1-byloc4
                            f1conf1-f1conf4  f1loc1-f1loc4
                            f2conf1-f2conf4  f2loc1-f2loc4;
          CATEGORICAL ARE  byconf1-byconf4 byloc1-byloc4
                            f1conf1-f1conf4 f1loc1-f1loc4
                            f2conf1-f2conf4 f2loc1-f2loc4;
          WEIGHT IS weight;
          MISSING ARE race (99) gender (99) byconf1-f2loc6 (99);
ANALYSIS: ESTIMATOR=WLSMV;
OUTPUT: SAMPSTAT STANDARDIZED MODINDICES;
MODEL: 
   f1 BY byconf1@1;
   f1 BY byconf2 (2);
   f1 BY byconf3 (3);
   f1 BY byconf4 (4);
   f2 BY byloc1 (5);
   f2 BY byloc2 (6);
   f2 BY byloc3 (7);
   f2 BY byloc4 (8);
   f3 BY f1conf1@1;
   f3 BY f1conf2 (2);
   f3 BY f1conf3 (3);
   f3 BY f1conf4 (4);
   f4 BY f1loc1 (5);
   f4 BY f1loc2 (6);
   f4 BY f1loc3 (7);
   f4 BY f1loc4 (8);
   f5 BY f2conf1@1;
   f5 BY f2conf2 (2);
   f5 BY f2conf3 (3);
   f5 BY f2conf4 (4);
   f6 BY f2loc1 (5);
   f6 BY f2loc2 (6);
   f6 BY f2loc3 (7);
   f6 BY f2loc4 (8);
  [byconf1$1 f1conf1$1 f2conf1$1] (t1);  ! constraining thresholds over time
  [byconf1$2 f1conf1$2 f2conf1$2] (t2); 
  [byconf1$3 f1conf1$3 f2conf1$3] (t3);
  [byconf2$1 f1conf2$1 f2conf2$1] (t4);  
  [byconf2$2 f1conf2$2 f2conf2$2] (t5); 
  [byconf2$3 f1conf2$3 f2conf2$3] (t6);
  [byconf3$1 f1conf3$1 f2conf3$1] (t7);  
  [byconf3$2 f1conf3$2 f2conf3$2] (t8); 
  [byconf3$3 f1conf3$3 f2conf3$3] (t9);
  [byconf4$1 f1conf4$1 f2conf4$1] (t10);  
  [byconf4$2 f1conf4$2 f2conf4$2] (t11); 
  [byconf4$3 f1conf4$3 f2conf4$3] (t12);
  [byloc1$1 f1loc1$1 f2loc1$1] (t13);  
  [byloc1$2 f1loc1$2 f2loc1$2] (t14); 
  [byloc1$3 f1loc1$3 f2loc1$3] (t15); 
  [byloc2$1 f1loc2$1 f2loc2$1] (t16);  
  [byloc2$2 f1loc2$2 f2loc2$2] (t17); 
  [byloc2$3 f1loc2$3 f2loc2$3] (t18);
  [byloc3$1 f1loc3$1 f2loc3$1] (t19);  
  [byloc3$2 f1loc3$2 f2loc3$2] (t20); 
  [byloc3$3 f1loc3$3 f2loc3$3] (t21);
  [byloc4$1 f1loc4$1 f2loc4$1] (t22);  
  [byloc4$2 f1loc4$2 f2loc4$2] (t23); 
  [byloc4$3 f1loc4$3 f2loc4$3] (t24);

8.2.4.2 measurement invariance over time and across gender groups

TITLE: MEASUREMENT INVARIANCE OVER TIME AND ACROSS GENDER GROUPS
DATA: FILE IS "data\NELSSelfConcept3waves.dat";
      FORMAT IS F7 F4 2F2 F11.4 39F2;
VARIABLE: NAMES ARE id status race gender weight 
          byconf1 byconf2  byconf3  byconf4  byconf5  byconf6  byconf7  
          byloc1  byloc2  byloc3  byloc4  byloc5  byloc6  
          f1conf1 f1conf2  f1conf3 f1conf4  f1conf5  f1conf6  f1conf7 
          f1loc1 f1loc2 f1loc3  f1loc4  f1loc5  f1loc6  
          f2conf1 f2conf2  f2conf3  f2conf4 f2conf5 f2conf6 f2conf7  
          f2loc1   f2loc2  f2loc3 f2loc4 f2loc5 f2loc6;
          USEVARIABLES ARE  gender byconf1-byconf4 byloc1-byloc4
                            f1conf1-f1conf4 f1loc1-f1loc4
                            f2conf1-f2conf4 f2loc1-f2loc4;
          CATEGORICAL ARE  byconf1-byconf4 byloc1-byloc4
                            f1conf1-f1conf4 f1loc1-f1loc4
                            f2conf1-f2conf4 f2loc1-f2loc4;
          WEIGHT IS weight;
          MISSING ARE race (99) gender (99) byconf1-f2loc6 (99);
          GROUPING IS gender (0=Male 1=Female);
ANALYSIS: ESTIMATOR=WLSMV;
OUTPUT: SAMPSTAT STANDARDIZED MODINDICES;
MODEL: 
  f1 BY byconf1@1;
  f1 BY byconf2 (2);
  f1 BY byconf3 (3);
  f1 BY byconf4 (4);
  f2 BY byloc1 (5);
  f2 BY byloc2 (6);
  f2 BY byloc3 (7);
  f2 BY byloc4 (8);
  f3 BY f1conf1@1;
  f3 BY f1conf2 (2);
  f3 BY f1conf3 (3);
  f3 BY f1conf4 (4);
  f4 BY f1loc1 (5);
  f4 BY f1loc2 (6);
  f4 BY f1loc3 (7);
  f4 BY f1loc4 (8);
  f5 BY f2conf1@1;
  f5 BY f2conf2 (2);
  f5 BY f2conf3 (3);
  f5 BY f2conf4 (4);
  f6 BY f2loc1 (5);
  f6 BY f2loc2 (6);
  f6 BY f2loc3 (7);
  f6 BY f2loc4 (8);
  [byconf1$1 f1conf1$1 f2conf1$1] (t1);  ! constraining thresholds over time
 ! thresholds across groups are held equal by default 
  [byconf1$2 f1conf1$2 f2conf1$2] (t2); 
  [byconf1$3 f1conf1$3 f2conf1$3] (t3); 
  [byconf2$1 f1conf2$1 f2conf2$1] (t4);  
  [byconf2$2 f1conf2$2 f2conf2$2] (t5); 
  [byconf2$3 f1conf2$3 f2conf2$3] (t6);
  [byconf3$1 f1conf3$1 f2conf3$1] (t7);  
  [byconf3$2 f1conf3$2 f2conf3$2] (t8); 
  [byconf3$3 f1conf3$3 f2conf3$3] (t9);
  [byconf4$1 f1conf4$1 f2conf4$1] (t10);  
  [byconf4$2 f1conf4$2 f2conf4$2] (t11); 
  [byconf4$3 f1conf4$3 f2conf4$3] (t12);
  [byloc1$1 f1loc1$1 f2loc1$1] (t13);  
  [byloc1$2 f1loc1$2 f2loc1$2] (t14); 
  [byloc1$3 f1loc1$3 f2loc1$3] (t15); 
  [byloc2$1 f1loc2$1 f2loc2$1] (t16);  
  [byloc2$2 f1loc2$2 f2loc2$2] (t17); 
  [byloc2$3 f1loc2$3 f2loc2$3] (t18);
  [byloc3$1 f1loc3$1 f2loc3$1] (t19);  
  [byloc3$2 f1loc3$2 f2loc3$2] (t20); 
  [byloc3$3 f1loc3$3 f2loc3$3] (t21);
  [byloc4$1 f1loc4$1 f2loc4$1] (t22);  
  [byloc4$2 f1loc4$2 f2loc4$2] (t23); 
  [byloc4$3 f1loc4$3 f2loc4$3] (t24);

8.2.4.3 piecewise latent growth model with measurement invariance over time

TITLE: PIECEWISE LATENT GROWTH MODEL WITH MEASUREMENT INVARIANCE OVER TIME
DATA: FILE IS "data\NELSSelfConcept3waves.dat";
      FORMAT IS F7 F4 2F2 F11.4 39F2;
VARIABLE: NAMES ARE id status race gender weight 
          byconf1 byconf2  byconf3  byconf4  byconf5  byconf6  byconf7  
          byloc1  byloc2  byloc3  byloc4  byloc5  byloc6  
          f1conf1 f1conf2  f1conf3 f1conf4  f1conf5  f1conf6  f1conf7 
          f1loc1 f1loc2 f1loc3  f1loc4  f1loc5  f1loc6  
          f2conf1 f2conf2  f2conf3  f2conf4 f2conf5 f2conf6 f2conf7  
          f2loc1   f2loc2  f2loc3 f2loc4 f2loc5 f2loc6;
          USEVARIABLES ARE  byconf1-byconf4  byloc1-byloc4
                            f1conf1-f1conf4  f1loc1-f1loc4
                            f2conf1-f2conf4  f2loc1-f2loc4;
          CATEGORICAL ARE  byconf1-byconf4 byloc1-byloc4
                            f1conf1-f1conf4 f1loc1-f1loc4
                            f2conf1-f2conf4 f2loc1-f2loc4;
          WEIGHT IS weight;
          MISSING ARE race (99) gender (99) byconf1-f2loc6 (99);
ANALYSIS: ESTIMATOR=WLSMV;
OUTPUT: SAMPSTAT STANDARDIZED MODINDICES;
PLOT:   TYPE = PLOT3;
        SERIES = f1 f3 f5 (*) | f2 f4 f6(*);
MODEL: f1 BY byconf1@1;
       f1 BY byconf2 (2);
       f1 BY byconf3 (3);
       f1 BY byconf4 (4);
       f2 BY byloc1 (5);
       f2 BY byloc2 (6);
       f2 BY byloc3 (7);
       f2 BY byloc4 (8);
       f3 BY f1conf1@1;
       f3 BY f1conf2 (2);
       f3 BY f1conf3 (3);
       f3 BY f1conf4 (4);
       f4 BY f1loc1 (5);
       f4 BY f1loc2 (6);
       f4 BY f1loc3 (7);
       f4 BY f1loc4 (8);
       f5 BY f2conf1@1;
       f5 BY f2conf2 (2);
       f5 BY f2conf3 (3);
       f5 BY f2conf4 (4);
       f6 BY f2loc1 (5);
       f6 BY f2loc2 (6);
       f6 BY f2loc3 (7);
       f6 BY f2loc4 (8);
       [byconf1$1 f1conf1$1 f2conf1$1] (t1);  
       [byconf1$2 f1conf1$2 f2conf1$2] (t2); 
       [byconf1$3 f1conf1$3 f2conf1$3] (t3); 
       [byconf2$1 f1conf2$1 f2conf2$1] (t4);  
       [byconf2$2 f1conf2$2 f2conf2$2] (t5); 
       [byconf2$3 f1conf2$3 f2conf2$3] (t6);
       [byconf3$1 f1conf3$1 f2conf3$1] (t7);  
       [byconf3$2 f1conf3$2 f2conf3$2] (t8); 
       [byconf3$3 f1conf3$3 f2conf3$3] (t9);
       [byconf4$1 f1conf4$1 f2conf4$1] (t10);  
       [byconf4$2 f1conf4$2 f2conf4$2] (t11); 
       [byconf4$3 f1conf4$3 f2conf4$3] (t12);
       [byloc1$1 f1loc1$1 f2loc1$1] (t13);  
       [byloc1$2 f1loc1$2 f2loc1$2] (t14); 
       [byloc1$3 f1loc1$3 f2loc1$3] (t15); 
       [byloc2$1 f1loc2$1 f2loc2$1] (t16);  
       [byloc2$2 f1loc2$2 f2loc2$2] (t17); 
       [byloc2$3 f1loc2$3 f2loc2$3] (t18);
       [byloc3$1 f1loc3$1 f2loc3$1] (t19);  
       [byloc3$2 f1loc3$2 f2loc3$2] (t20); 
       [byloc3$3 f1loc3$3 f2loc3$3] (t21);
       [byloc4$1 f1loc4$1 f2loc4$1] (t22);  
       [byloc4$2 f1loc4$2 f2loc4$2] (t23); 
       [byloc4$3 f1loc4$3 f2loc4$3] (t24);
       i s1 | f1@0 f3@1 f5@1;
       i s2 | f1@0 f3@0 f5@1;
       ii ss1 | f2@0 f4@1 f6@1;
       ii ss2 | f2@0 f4@0 f6@1;
       f1-f6@0; ! residual variance fixed at 0;
       ! f1=i; f2=ii;
       ! f3=i+s1; f4=ii+ss1;
       ! f5=i+s1+s2; f6=ii+ss1+ss2;