Chapter 5 Full Structural Equation Models

5.1 Syntax - R

library(lavaan); library(semPlot)

5.1.1 One-step SEM

JOBENR.corr <- '
1.00
.71  1.00
.62   .66  1.00
.44   .50   .71  1.00
.59   .70   .68   .62  1.00
.61   .58   .60   .48   .54  1.00
-.27  -.21  -.28  -.26  -.21  -.47  1.00
.53   .50   .40   .37   .39   .67  -.36  1.00
-.16  -.15  -.21  -.20  -.14  -.31   .65  -.17  1.00
.58   .58   .54   .50   .56   .78  -.44   .60  -.33  1.00'
JOBENR.SDs <- c(1.00, .92, .87, .85, .99, .99, 1.23, .98, 1.08, .98)
SEM.management.cov <- getCov(JOBENR.corr, sds = JOBENR.SDs, names = paste("Y", 1:10, sep=""))
SEM.management.model <-
    paste0('F1 =~ NA*Y1 + ', paste0('Y', 2:5, collapse=' + '), ' \n',
    ' F2 =~ NA*Y7 + Y9', ' \n',
    ' F3 =~ Y6 + Y8 + Y10', ' \n',
    ' F1 ~~ 1*F1', ' \n',
    ' F2 ~~ 1*F2', ' \n',
    ' Y1 ~~ Y2', ' \n',
    ' Y3 ~~ Y4', ' \n',
    ' Y3 ~~ Y5', ' \n',
    ' Y4 ~~ Y5', ' \n',
    ' F3 ~ F1 + F2', ' \n',
    'F1 ~~ 0*F2')
SEM.management.fit <- sem(SEM.management.model, sample.cov = SEM.management.cov, sample.nobs = 114)
summary(SEM.management.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        26
##                                                       
##   Number of observations                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                32.232
##   Degrees of freedom                                29
##   P-value (Chi-square)                           0.310
## 
## Model Test Baseline Model:
## 
##   Test statistic                               713.751
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995
##   Tucker-Lewis Index (TLI)                       0.992
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1253.375
##   Loglikelihood unrestricted model (H1)      -1237.259
##                                                       
##   Akaike (AIC)                                2558.751
##   Bayesian (BIC)                              2629.892
##   Sample-size adjusted Bayesian (BIC)         2547.715
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.031
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.080
##   P-value RMSEA <= 0.05                          0.680
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.114
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                0.803    0.085    9.444    0.000    0.803    0.806
##     Y2                0.797    0.075   10.670    0.000    0.797    0.870
##     Y3                0.664    0.074    9.018    0.000    0.664    0.766
##     Y4                0.493    0.078    6.319    0.000    0.493    0.582
##     Y5                0.765    0.083    9.185    0.000    0.765    0.776
##   F2 =~                                                                 
##     Y7                1.216    0.155    7.843    0.000    1.216    0.993
##     Y9                0.704    0.117    5.992    0.000    0.704    0.654
##   F3 =~                                                                 
##     Y6                1.000                               0.844    0.902
##     Y8                0.783    0.091    8.594    0.000    0.661    0.699
##     Y10               0.929    0.082   11.295    0.000    0.784    0.841
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F3 ~                                                                  
##     F1                0.624    0.074    8.387    0.000    0.739    0.739
##     F2               -0.305    0.070   -4.381    0.000   -0.362   -0.362
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y1 ~~                                                                 
##    .Y2                0.008    0.053    0.144    0.886    0.008    0.029
##  .Y3 ~~                                                                 
##    .Y4                0.194    0.050    3.857    0.000    0.194    0.505
##    .Y5                0.073    0.050    1.473    0.141    0.073    0.211
##  .Y4 ~~                                                                 
##    .Y5                0.140    0.054    2.617    0.009    0.140    0.328
##   F1 ~~                                                                 
##     F2                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##    .Y1                0.347    0.075    4.629    0.000    0.347    0.350
##    .Y2                0.204    0.057    3.555    0.000    0.204    0.243
##    .Y3                0.310    0.055    5.628    0.000    0.310    0.413
##    .Y4                0.473    0.069    6.856    0.000    0.473    0.661
##    .Y5                0.386    0.070    5.513    0.000    0.386    0.398
##    .Y7                0.020    0.321    0.062    0.950    0.020    0.013
##    .Y9                0.661    0.139    4.772    0.000    0.661    0.572
##    .Y6                0.163    0.044    3.735    0.000    0.163    0.186
##    .Y8                0.456    0.068    6.737    0.000    0.456    0.511
##    .Y10               0.255    0.048    5.313    0.000    0.255    0.293
##    .F3                0.230    0.060    3.845    0.000    0.323    0.323
## 
## R-Square:
##                    Estimate
##     Y1                0.650
##     Y2                0.757
##     Y3                0.587
##     Y4                0.339
##     Y5                0.602
##     Y7                0.987
##     Y9                0.428
##     Y6                0.814
##     Y8                0.489
##     Y10               0.707
##     F3                0.677
semPaths(SEM.management.fit)

5.1.2 Two-step SEM process

5.1.2.1 measurement phase

DANDS.lower <- '
6.052                                                       
3.516 3.098                                                     
5.52 3.626 7.508                                                    
1.676 1.235 1.274 4.162                                             
0.927 0.352 0.823 1.577 4.537                                           
3.84 2.899 4.56 2.114 2.5 18.49                                     
1.117 0.863 1.432 1.109 1.574 3.636 3.61                                    
1.136 0.98 1.218 0.45 0.389 1.814 1.242 3.61                                
4.348 2.851 4.475 1.486 0.767 5.18 1.574 1.229 6.917                            
2.157 2.062 2.662 0.821 0.696 3.495 1.39 0.474 3.38 3.572                       
4.276 3.199 5.595 1.112 0.544 6.216 1.813 1.241 6.117 3.628 8.066                   
1.905 1.61 1.988 2.077 1.311 4.115 1.325 1.138 2.745 1.747 2.731 5.476              
1.167 0.855 1.779 1.477 3.244 4.129 1.441 1.061 1.839 1.15 1.805 3.044 5.153            
3.563 3.062 4.807 1.695 2.402 16.53 2.641 0.526 5.535 3.555 6.584 4.424 4.909 23.62     
2.022 1.419 2.777 0.716 1.739 7.286 2.32 1.349 3.274 2.041 3.46 3.448 3.104 7.123 7.076 
0.267 0.294 0.489 0.356 0.831 1.026 0.91 1.485 0.898 0.279 0.722 1.444 0.938 0.528 1.765 3.764'
SEM.2step.cov <- getCov(DANDS.lower, names = paste("Y", 1:16, sep=""))
SEM.2step.initial.measurement.model <- '
F1 =~ NA*Y1 + Y2 +Y3
F2 =~ NA*Y4 + Y5
F3 =~ NA*Y6 + Y7 + Y8
F4 =~ Y9 + Y10 + Y11
F5 =~ Y12 + Y13
F6 =~ Y14 + Y15 + Y16
F1 ~~ 1*F1
F2 ~~ 1*F2
F3 ~~ 1*F3'
SEM.2step.initial.measurement.fit <- cfa(SEM.2step.initial.measurement.model, sample.cov = SEM.2step.cov, sample.nobs = 84)
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
summary(SEM.2step.initial.measurement.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 104 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               182.555
##   Degrees of freedom                                89
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.881
##   Tucker-Lewis Index (TLI)                       0.839
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2733.133
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5560.265
##   Bayesian (BIC)                              5674.513
##   Sample-size adjusted Bayesian (BIC)         5526.251
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.112
##   90 Percent confidence interval - lower         0.089
##   90 Percent confidence interval - upper         0.135
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.090
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.254    0.207   10.872    0.000    2.254    0.922
##     Y2                1.525    0.154    9.921    0.000    1.525    0.872
##     Y3                2.408    0.237   10.147    0.000    2.408    0.884
##   F2 =~                                                                 
##     Y4                1.000    0.233    4.284    0.000    1.000    0.493
##     Y5                1.558    0.258    6.029    0.000    1.558    0.736
##   F3 =~                                                                 
##     Y6                3.810    0.421    9.040    0.000    3.810    0.891
##     Y7                0.970    0.201    4.826    0.000    0.970    0.513
##     Y8                0.474    0.213    2.229    0.026    0.474    0.251
##   F4 =~                                                                 
##     Y9                1.000                               2.345    0.897
##     Y10               0.598    0.071    8.468    0.000    1.401    0.746
##     Y11               1.101    0.091   12.162    0.000    2.581    0.914
##   F5 =~                                                                 
##     Y12               1.000                               1.520    0.653
##     Y13               1.302    0.212    6.140    0.000    1.979    0.877
##   F6 =~                                                                 
##     Y14               1.000                               3.721    0.770
##     Y15               0.514    0.070    7.318    0.000    1.913    0.723
##     Y16               0.110    0.056    1.984    0.047    0.411    0.213
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                0.320    0.138    2.310    0.021    0.320    0.320
##     F3                0.486    0.103    4.708    0.000    0.486    0.486
##     F4                1.859    0.248    7.494    0.000    0.793    0.793
##     F5                0.529    0.200    2.642    0.008    0.348    0.348
##     F6                1.822    0.485    3.754    0.000    0.490    0.490
##   F2 ~~                                                                 
##     F3                0.498    0.140    3.559    0.000    0.498    0.498
##     F4                0.602    0.344    1.749    0.080    0.257    0.257
##     F5                1.411    0.287    4.907    0.000    0.928    0.928
##     F6                1.787    0.613    2.916    0.004    0.480    0.480
##   F3 ~~                                                                 
##     F4                1.463    0.283    5.165    0.000    0.624    0.624
##     F5                0.907    0.228    3.984    0.000    0.597    0.597
##     F6                3.953    0.492    8.031    0.000    1.062    1.062
##   F4 ~~                                                                 
##     F5                1.563    0.533    2.933    0.003    0.439    0.439
##     F6                5.945    1.414    4.206    0.000    0.681    0.681
##   F5 ~~                                                                 
##     F6                4.382    1.137    3.854    0.000    0.775    0.775
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.899    0.247    3.646    0.000    0.899    0.150
##    .Y2                0.734    0.150    4.881    0.000    0.734    0.240
##    .Y3                1.619    0.348    4.652    0.000    1.619    0.218
##    .Y4                3.113    0.526    5.918    0.000    3.113    0.757
##    .Y5                2.055    0.609    3.371    0.001    2.055    0.458
##    .Y6                3.754    1.742    2.155    0.031    3.754    0.205
##    .Y7                2.627    0.421    6.235    0.000    2.627    0.736
##    .Y8                3.342    0.519    6.436    0.000    3.342    0.937
##    .Y9                1.337    0.325    4.119    0.000    1.337    0.196
##    .Y10               1.566    0.269    5.817    0.000    1.566    0.444
##    .Y11               1.307    0.361    3.618    0.000    1.307    0.164
##    .Y12               3.101    0.540    5.741    0.000    3.101    0.573
##    .Y13               1.176    0.462    2.546    0.011    1.176    0.231
##    .Y14               9.492    1.845    5.145    0.000    9.492    0.407
##    .Y15               3.333    0.593    5.616    0.000    3.333    0.477
##    .Y16               3.551    0.548    6.484    0.000    3.551    0.955
##     F4                5.498    1.064    5.166    0.000    1.000    1.000
##     F5                2.310    0.729    3.170    0.002    1.000    1.000
##     F6               13.847    3.476    3.984    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.850
##     Y2                0.760
##     Y3                0.782
##     Y4                0.243
##     Y5                0.542
##     Y6                0.795
##     Y7                0.264
##     Y8                0.063
##     Y9                0.804
##     Y10               0.556
##     Y11               0.836
##     Y12               0.427
##     Y13               0.769
##     Y14               0.593
##     Y15               0.523
##     Y16               0.045
MI <- modindices(SEM.2step.initial.measurement.fit)
## Warning in lav_start_check_cov(lavpartable = lavpartable, start = START): lavaan WARNING: starting values imply a correlation larger than 1;
##                    variables involved are:  F3   F6
smaller.MI <- subset(MI, mi >= 3.84)
smaller.MI
##     lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox
## 19   F3 ~~  F3 10.051 -0.507  -1.000   -1.000   -1.000
## 54   F1 =~  Y4  4.965  0.536   0.536    0.264    0.264
## 55   F1 =~  Y5  4.784 -0.808  -0.808   -0.381   -0.381
## 62   F1 =~ Y12  5.071  0.547   0.547    0.235    0.235
## 63   F1 =~ Y13  5.100 -0.714  -0.714   -0.316   -0.316
## 70   F2 =~  Y6  4.694 -1.262  -1.262   -0.295   -0.295
## 76   F2 =~ Y12  5.074 -1.509  -1.509   -0.649   -0.649
## 90   F3 =~ Y13 11.032 -1.664  -1.664   -0.738   -0.738
## 91   F3 =~ Y14  5.288  2.325   2.325    0.481    0.481
## 94   F4 =~  Y1  4.837 -0.288  -0.675   -0.276   -0.276
## 102  F4 =~ Y12  8.416  0.320   0.749    0.322    0.322
## 103  F4 =~ Y13  8.706 -0.423  -0.991   -0.439   -0.439
## 132  F6 =~ Y12  5.926  0.253   0.942    0.405    0.405
## 133  F6 =~ Y13 11.778 -0.493  -1.833   -0.812   -0.812
## 141  Y1 ~~  Y9 11.880  0.652   0.652    0.595    0.595
## 142  Y1 ~~ Y10  5.623 -0.413  -0.413   -0.348   -0.348
## 143  Y1 ~~ Y11  6.912 -0.523  -0.523   -0.483   -0.483
## 156  Y2 ~~ Y10 11.050  0.462   0.462    0.431    0.431
## 168  Y3 ~~  Y9  6.384 -0.570  -0.570   -0.387   -0.387
## 170  Y3 ~~ Y11 12.585  0.839   0.839    0.577    0.577
## 183  Y4 ~~ Y12  8.591  1.177   1.177    0.379    0.379
## 184  Y4 ~~ Y13  9.399 -1.324  -1.324   -0.692   -0.692
## 189  Y5 ~~  Y7  4.772  0.652   0.652    0.281    0.281
## 194  Y5 ~~ Y12 19.259 -1.973  -1.973   -0.782   -0.782
## 195  Y5 ~~ Y13 21.558  2.376   2.376    1.528    1.528
## 199  Y6 ~~  Y7  4.655 -2.193  -2.193   -0.698   -0.698
## 206  Y6 ~~ Y14 28.717  6.508   6.508    1.090    1.090
## 209  Y7 ~~  Y8  5.098  0.757   0.757    0.256    0.256
## 215  Y7 ~~ Y14  5.504 -1.525  -1.525   -0.305   -0.305
## 223  Y8 ~~ Y14  9.082 -2.069  -2.069   -0.367   -0.367
## 225  Y8 ~~ Y16 11.007  1.257   1.257    0.365    0.365
## 251 Y14 ~~ Y15  6.442 -3.986  -3.986   -0.709   -0.709
## 252 Y14 ~~ Y16  4.936 -1.580  -1.580   -0.272   -0.272
## 253 Y15 ~~ Y16  5.433  0.952   0.952    0.277    0.277
SEM.2step.measurement.model2.fit <- update(SEM.2step.initial.measurement.fit, model = c(SEM.2step.initial.measurement.model, 
'Y6 ~~ Y14'))
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
summary(SEM.2step.measurement.model2.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 104 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        48
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               158.511
##   Degrees of freedom                                88
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.910
##   Tucker-Lewis Index (TLI)                       0.877
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2721.110
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5538.221
##   Bayesian (BIC)                              5654.900
##   Sample-size adjusted Bayesian (BIC)         5503.483
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.098
##   90 Percent confidence interval - lower         0.073
##   90 Percent confidence interval - upper         0.122
##   P-value RMSEA <= 0.05                          0.002
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.256    0.207   10.884    0.000    2.256    0.922
##     Y2                1.525    0.154    9.922    0.000    1.525    0.872
##     Y3                2.407    0.237   10.136    0.000    2.407    0.884
##   F2 =~                                                                 
##     Y4                1.024    0.234    4.369    0.000    1.024    0.505
##     Y5                1.522    0.258    5.905    0.000    1.522    0.719
##   F3 =~                                                                 
##     Y6                3.307    0.438    7.557    0.000    3.307    0.771
##     Y7                1.201    0.203    5.923    0.000    1.201    0.636
##     Y8                0.761    0.217    3.504    0.000    0.761    0.403
##   F4 =~                                                                 
##     Y9                1.000                               2.353    0.900
##     Y10               0.596    0.070    8.511    0.000    1.403    0.747
##     Y11               1.093    0.090   12.145    0.000    2.571    0.911
##   F5 =~                                                                 
##     Y12               1.000                               1.563    0.672
##     Y13               1.231    0.193    6.371    0.000    1.924    0.853
##   F6 =~                                                                 
##     Y14               1.000                               2.972    0.620
##     Y15               0.745    0.133    5.606    0.000    2.215    0.838
##     Y16               0.230    0.080    2.887    0.004    0.683    0.354
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.300    1.774    4.116    0.000    7.300    0.711
##   F1 ~~                                                                 
##     F2                0.333    0.139    2.389    0.017    0.333    0.333
##     F3                0.482    0.106    4.565    0.000    0.482    0.482
##     F4                1.865    0.248    7.520    0.000    0.793    0.793
##     F5                0.571    0.207    2.758    0.006    0.365    0.365
##     F6                1.376    0.417    3.300    0.001    0.463    0.463
##   F2 ~~                                                                 
##     F3                0.568    0.140    4.063    0.000    0.568    0.568
##     F4                0.632    0.349    1.809    0.070    0.269    0.269
##     F5                1.471    0.289    5.091    0.000    0.941    0.941
##     F6                1.521    0.519    2.930    0.003    0.512    0.512
##   F3 ~~                                                                 
##     F4                1.445    0.286    5.057    0.000    0.614    0.614
##     F5                1.016    0.235    4.314    0.000    0.650    0.650
##     F6                2.713    0.524    5.173    0.000    0.913    0.913
##   F4 ~~                                                                 
##     F5                1.700    0.556    3.057    0.002    0.462    0.462
##     F6                4.526    1.237    3.658    0.000    0.647    0.647
##   F5 ~~                                                                 
##     F6                3.740    1.037    3.606    0.000    0.805    0.805
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.892    0.246    3.627    0.000    0.892    0.149
##    .Y2                0.734    0.150    4.882    0.000    0.734    0.240
##    .Y3                1.627    0.349    4.666    0.000    1.627    0.219
##    .Y4                3.065    0.524    5.849    0.000    3.065    0.745
##    .Y5                2.165    0.601    3.604    0.000    2.165    0.483
##    .Y6                7.472    1.822    4.101    0.000    7.472    0.406
##    .Y7                2.125    0.386    5.502    0.000    2.125    0.596
##    .Y8                2.988    0.481    6.210    0.000    2.988    0.838
##    .Y9                1.297    0.323    4.020    0.000    1.297    0.190
##    .Y10               1.561    0.269    5.809    0.000    1.561    0.442
##    .Y11               1.359    0.366    3.717    0.000    1.359    0.170
##    .Y12               2.967    0.525    5.647    0.000    2.967    0.548
##    .Y13               1.389    0.446    3.118    0.002    1.389    0.273
##    .Y14              14.125    2.455    5.753    0.000   14.125    0.615
##    .Y15               2.086    0.646    3.228    0.001    2.086    0.298
##    .Y16               3.253    0.514    6.330    0.000    3.253    0.875
##     F4                5.538    1.066    5.196    0.000    1.000    1.000
##     F5                2.444    0.744    3.283    0.001    1.000    1.000
##     F6                8.832    2.999    2.945    0.003    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.851
##     Y2                0.760
##     Y3                0.781
##     Y4                0.255
##     Y5                0.517
##     Y6                0.594
##     Y7                0.404
##     Y8                0.162
##     Y9                0.810
##     Y10               0.558
##     Y11               0.830
##     Y12               0.452
##     Y13               0.727
##     Y14               0.385
##     Y15               0.702
##     Y16               0.125
## 
## Modification Indices:
## 
##     lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox
## 55   F1 =~  Y4  4.735  0.533   0.533    0.263    0.263
## 56   F1 =~  Y5  4.735 -0.793  -0.793   -0.375   -0.375
## 57   F1 =~  Y6  0.063 -0.145  -0.145   -0.034   -0.034
## 58   F1 =~  Y7  0.084 -0.066  -0.066   -0.035   -0.035
## 59   F1 =~  Y8  0.889  0.229   0.229    0.121    0.121
## 60   F1 =~  Y9  0.016  0.047   0.047    0.018    0.018
## 61   F1 =~ Y10  0.078 -0.080  -0.080   -0.043   -0.043
## 62   F1 =~ Y11  0.007  0.034   0.034    0.012    0.012
## 63   F1 =~ Y12  4.406  0.519   0.519    0.223    0.223
## 64   F1 =~ Y13  4.406 -0.639  -0.639   -0.283   -0.283
## 65   F1 =~ Y14  1.902  0.726   0.726    0.152    0.152
## 66   F1 =~ Y15  0.776 -0.328  -0.328   -0.124   -0.124
## 67   F1 =~ Y16  0.831 -0.223  -0.223   -0.116   -0.116
## 68   F2 =~  Y1  0.002  0.006   0.006    0.003    0.003
## 69   F2 =~  Y2  0.006 -0.010  -0.010   -0.006   -0.006
## 70   F2 =~  Y3  0.001  0.006   0.006    0.002    0.002
## 71   F2 =~  Y6  1.186 -0.709  -0.709   -0.165   -0.165
## 72   F2 =~  Y7  0.748  0.223   0.223    0.118    0.118
## 73   F2 =~  Y8  0.298  0.151   0.151    0.080    0.080
## 74   F2 =~  Y9  0.211  0.090   0.090    0.034    0.034
## 75   F2 =~ Y10  0.606  0.133   0.133    0.071    0.071
## 76   F2 =~ Y11  0.957 -0.206  -0.206   -0.073   -0.073
## 77   F2 =~ Y12  4.068 -1.256  -1.256   -0.540   -0.540
## 78   F2 =~ Y13  4.068  1.547   1.547    0.685    0.685
## 79   F2 =~ Y14  0.597  0.523   0.523    0.109    0.109
## 80   F2 =~ Y15  0.935 -0.470  -0.470   -0.178   -0.178
## 81   F2 =~ Y16  0.197  0.132   0.132    0.069    0.069
## 82   F3 =~  Y1  0.924 -0.183  -0.183   -0.075   -0.075
## 83   F3 =~  Y2  0.027  0.024   0.024    0.014    0.014
## 84   F3 =~  Y3  0.792  0.197   0.197    0.072    0.072
## 85   F3 =~  Y4  0.084  0.091   0.091    0.045    0.045
## 86   F3 =~  Y5  0.084 -0.136  -0.136   -0.064   -0.064
## 87   F3 =~  Y9  0.100 -0.082  -0.082   -0.031   -0.031
## 88   F3 =~ Y10  0.695  0.186   0.186    0.099    0.099
## 89   F3 =~ Y11  0.066 -0.071  -0.071   -0.025   -0.025
## 90   F3 =~ Y12  4.826  0.856   0.856    0.368    0.368
## 91   F3 =~ Y13  4.826 -1.054  -1.054   -0.467   -0.467
## 92   F3 =~ Y14  0.195 -0.806  -0.806   -0.168   -0.168
## 93   F3 =~ Y15  0.072  0.327   0.327    0.124    0.124
## 94   F3 =~ Y16  0.059  0.173   0.173    0.090    0.090
## 95   F4 =~  Y1  4.581 -0.279  -0.658   -0.269   -0.269
## 96   F4 =~  Y2  0.493  0.066   0.156    0.089    0.089
## 97   F4 =~  Y3  2.424  0.227   0.535    0.196    0.196
## 98   F4 =~  Y4  2.490  0.163   0.383    0.189    0.189
## 99   F4 =~  Y5  2.490 -0.242  -0.570   -0.269   -0.269
## 100  F4 =~  Y6  0.038  0.058   0.137    0.032    0.032
## 101  F4 =~  Y7  0.136 -0.043  -0.101   -0.053   -0.053
## 102  F4 =~  Y8  0.066  0.031   0.073    0.038    0.038
## 103  F4 =~ Y12  7.674  0.311   0.732    0.315    0.315
## 104  F4 =~ Y13  7.674 -0.383  -0.901   -0.399   -0.399
## 105  F4 =~ Y14  2.824  0.469   1.104    0.230    0.230
## 106  F4 =~ Y15  1.288 -0.225  -0.529   -0.200   -0.200
## 107  F4 =~ Y16  0.932 -0.122  -0.288   -0.149   -0.149
## 108  F5 =~  Y1  0.522 -0.077  -0.121   -0.049   -0.049
## 109  F5 =~  Y2  0.000  0.000   0.000    0.000    0.000
## 110  F5 =~  Y3  0.627  0.099   0.155    0.057    0.057
## 111  F5 =~  Y4  0.869 -0.339  -0.530   -0.261   -0.261
## 112  F5 =~  Y5  0.869  0.504   0.788    0.372    0.372
## 113  F5 =~  Y6  0.379 -0.343  -0.537   -0.125   -0.125
## 114  F5 =~  Y7  0.596  0.165   0.258    0.137    0.137
## 115  F5 =~  Y8  0.036 -0.039  -0.062   -0.033   -0.033
## 116  F5 =~  Y9  0.372  0.080   0.125    0.048    0.048
## 117  F5 =~ Y10  0.494  0.082   0.128    0.068    0.068
## 118  F5 =~ Y11  1.146 -0.152  -0.237   -0.084   -0.084
## 119  F5 =~ Y14  1.146  0.614   0.960    0.200    0.200
## 120  F5 =~ Y15  1.553 -0.501  -0.783   -0.296   -0.296
## 121  F5 =~ Y16  0.243  0.126   0.196    0.102    0.102
## 122  F6 =~  Y1  2.575 -0.098  -0.292   -0.120   -0.120
## 123  F6 =~  Y2  0.086  0.014   0.041    0.023    0.023
## 124  F6 =~  Y3  2.148  0.105   0.311    0.114    0.114
## 125  F6 =~  Y4  0.039 -0.022  -0.065   -0.032   -0.032
## 126  F6 =~  Y5  0.039  0.032   0.096    0.045    0.045
## 127  F6 =~  Y6  2.194  0.998   2.967    0.692    0.692
## 128  F6 =~  Y7  2.552 -0.400  -1.189   -0.629   -0.629
## 129  F6 =~  Y8  0.015  0.028   0.084    0.044    0.044
## 130  F6 =~  Y9  0.007 -0.007  -0.022   -0.008   -0.008
## 131  F6 =~ Y10  0.327  0.043   0.128    0.068    0.068
## 132  F6 =~ Y11  0.093 -0.029  -0.085   -0.030   -0.030
## 133  F6 =~ Y12  8.068  0.413   1.228    0.528    0.528
## 134  F6 =~ Y13  8.068 -0.509  -1.512   -0.670   -0.670
## 135  Y1 ~~  Y2  0.948  0.222   0.222    0.275    0.275
## 136  Y1 ~~  Y3  0.304  0.202   0.202    0.168    0.168
## 137  Y1 ~~  Y4  1.290  0.273   0.273    0.165    0.165
## 138  Y1 ~~  Y5  1.272  0.254   0.254    0.183    0.183
## 139  Y1 ~~  Y6  0.232  0.152   0.152    0.059    0.059
## 140  Y1 ~~  Y7  0.346 -0.121  -0.121   -0.088   -0.088
## 141  Y1 ~~  Y8  0.030  0.040   0.040    0.024    0.024
## 142  Y1 ~~  Y9 11.744  0.646   0.646    0.600    0.600
## 143  Y1 ~~ Y10  5.943 -0.424  -0.424   -0.359   -0.359
## 144  Y1 ~~ Y11  6.961 -0.529  -0.529   -0.480   -0.480
## 145  Y1 ~~ Y12  0.007 -0.020  -0.020   -0.012   -0.012
## 146  Y1 ~~ Y13  1.389 -0.234  -0.234   -0.210   -0.210
## 147  Y1 ~~ Y14  0.716 -0.324  -0.324   -0.091   -0.091
## 148  Y1 ~~ Y15  0.070  0.064   0.064    0.047    0.047
## 149  Y1 ~~ Y16  0.173 -0.099  -0.099   -0.058   -0.058
## 150  Y2 ~~  Y3  2.116 -0.340  -0.340   -0.311   -0.311
## 151  Y2 ~~  Y4  2.284  0.289   0.289    0.193    0.193
## 152  Y2 ~~  Y5  2.895 -0.299  -0.299   -0.237   -0.237
## 153  Y2 ~~  Y6  0.026 -0.040  -0.040   -0.017   -0.017
## 154  Y2 ~~  Y7  0.004  0.010   0.010    0.008    0.008
## 155  Y2 ~~  Y8  1.824  0.251   0.251    0.169    0.169
## 156  Y2 ~~  Y9  1.767 -0.197  -0.197   -0.202   -0.202
## 157  Y2 ~~ Y10 11.284  0.467   0.467    0.436    0.436
## 158  Y2 ~~ Y11  0.106 -0.051  -0.051   -0.051   -0.051
## 159  Y2 ~~ Y12  3.797  0.376   0.376    0.254    0.254
## 160  Y2 ~~ Y13  0.478 -0.108  -0.108   -0.107   -0.107
## 161  Y2 ~~ Y14  0.539  0.222   0.222    0.069    0.069
## 162  Y2 ~~ Y15  1.370 -0.220  -0.220   -0.178   -0.178
## 163  Y2 ~~ Y16  0.011  0.020   0.020    0.013    0.013
## 164  Y3 ~~  Y4  2.840 -0.489  -0.489   -0.219   -0.219
## 165  Y3 ~~  Y5  0.071 -0.071  -0.071   -0.038   -0.038
## 166  Y3 ~~  Y6  0.175 -0.157  -0.157   -0.045   -0.045
## 167  Y3 ~~  Y7  0.001  0.009   0.009    0.005    0.005
## 168  Y3 ~~  Y8  0.121 -0.098  -0.098   -0.044   -0.044
## 169  Y3 ~~  Y9  6.610 -0.578  -0.578   -0.398   -0.398
## 170  Y3 ~~ Y10  0.765 -0.184  -0.184   -0.116   -0.116
## 171  Y3 ~~ Y11 12.478  0.843   0.843    0.567    0.567
## 172  Y3 ~~ Y12  1.672 -0.378  -0.378   -0.172   -0.172
## 173  Y3 ~~ Y13  2.760  0.393   0.393    0.261    0.261
## 174  Y3 ~~ Y14  0.148  0.176   0.176    0.037    0.037
## 175  Y3 ~~ Y15  0.731  0.244   0.244    0.133    0.133
## 176  Y3 ~~ Y16  0.010 -0.029  -0.029   -0.013   -0.013
## 178  Y4 ~~  Y6  0.019  0.069   0.069    0.014    0.014
## 179  Y4 ~~  Y7  1.180  0.338   0.338    0.132    0.132
## 180  Y4 ~~  Y8  0.092 -0.106  -0.106   -0.035   -0.035
## 181  Y4 ~~  Y9  1.747  0.365   0.365    0.183    0.183
## 182  Y4 ~~ Y10  0.001  0.007   0.007    0.003    0.003
## 183  Y4 ~~ Y11  0.690 -0.244  -0.244   -0.119   -0.119
## 184  Y4 ~~ Y12  7.966  1.140   1.140    0.378    0.378
## 185  Y4 ~~ Y13  7.452 -1.167  -1.167   -0.566   -0.566
## 186  Y4 ~~ Y14  0.005  0.044   0.044    0.007    0.007
## 187  Y4 ~~ Y15  3.009 -0.646  -0.646   -0.256   -0.256
## 188  Y4 ~~ Y16  0.023 -0.055  -0.055   -0.017   -0.017
## 189  Y5 ~~  Y6  2.178 -0.873  -0.873   -0.217   -0.217
## 190  Y5 ~~  Y7  4.723  0.636   0.636    0.296    0.296
## 191  Y5 ~~  Y8  2.309 -0.483  -0.483   -0.190   -0.190
## 192  Y5 ~~  Y9  0.001  0.010   0.010    0.006    0.006
## 193  Y5 ~~ Y10  0.702  0.198   0.198    0.108    0.108
## 194  Y5 ~~ Y11  0.766 -0.244  -0.244   -0.142   -0.142
## 195  Y5 ~~ Y12 22.726 -2.133  -2.133   -0.841   -0.841
## 196  Y5 ~~ Y13 21.162  2.317   2.317    1.336    1.336
## 197  Y5 ~~ Y14  0.543  0.464   0.464    0.084    0.084
## 198  Y5 ~~ Y15  0.118  0.142   0.142    0.067    0.067
## 199  Y5 ~~ Y16  0.578  0.250   0.250    0.094    0.094
## 200  Y6 ~~  Y7  1.229 -0.907  -0.907   -0.228   -0.228
## 201  Y6 ~~  Y8  0.106  0.167   0.167    0.035    0.035
## 202  Y6 ~~  Y9  0.603 -0.282  -0.282   -0.091   -0.091
## 203  Y6 ~~ Y10  0.002  0.015   0.015    0.005    0.005
## 204  Y6 ~~ Y11  0.463  0.265   0.265    0.083    0.083
## 205  Y6 ~~ Y12  0.224  0.232   0.232    0.049    0.049
## 206  Y6 ~~ Y13  0.004 -0.032  -0.032   -0.010   -0.010
## 207  Y6 ~~ Y15  3.002  1.478   1.478    0.374    0.374
## 208  Y6 ~~ Y16  1.215 -0.520  -0.520   -0.105   -0.105
## 209  Y7 ~~  Y8  1.637  0.395   0.395    0.157    0.157
## 210  Y7 ~~  Y9  0.304 -0.130  -0.130   -0.078   -0.078
## 211  Y7 ~~ Y10  2.934  0.382   0.382    0.210    0.210
## 212  Y7 ~~ Y11  0.000  0.002   0.002    0.001    0.001
## 213  Y7 ~~ Y12  1.002 -0.312  -0.312   -0.124   -0.124
## 214  Y7 ~~ Y13  0.526 -0.187  -0.187   -0.109   -0.109
## 215  Y7 ~~ Y14  0.118 -0.225  -0.225   -0.041   -0.041
## 216  Y7 ~~ Y15  0.023 -0.056  -0.056   -0.027   -0.027
## 217  Y7 ~~ Y16  0.428  0.205   0.205    0.078    0.078
## 218  Y8 ~~  Y9  0.093  0.081   0.081    0.041    0.041
## 219  Y8 ~~ Y10  1.678 -0.326  -0.326   -0.151   -0.151
## 220  Y8 ~~ Y11  0.075 -0.077  -0.077   -0.038   -0.038
## 221  Y8 ~~ Y12  0.593  0.270   0.270    0.091    0.091
## 222  Y8 ~~ Y13  1.224  0.312   0.312    0.153    0.153
## 223  Y8 ~~ Y14  3.871 -1.146  -1.146   -0.176   -0.176
## 224  Y8 ~~ Y15  1.189 -0.394  -0.394   -0.158   -0.158
## 225  Y8 ~~ Y16  8.820  1.043   1.043    0.335    0.335
## 226  Y9 ~~ Y10  0.144  0.092   0.092    0.064    0.064
## 227  Y9 ~~ Y11  0.025 -0.078  -0.078   -0.059   -0.059
## 228  Y9 ~~ Y12  0.179  0.117   0.117    0.060    0.060
## 229  Y9 ~~ Y13  0.114 -0.078  -0.078   -0.058   -0.058
## 230  Y9 ~~ Y14  0.068  0.116   0.116    0.027    0.027
## 231  Y9 ~~ Y15  0.018  0.038   0.038    0.023    0.023
## 232  Y9 ~~ Y16  0.640  0.220   0.220    0.107    0.107
## 233 Y10 ~~ Y11  0.056 -0.062  -0.062   -0.043   -0.043
## 234 Y10 ~~ Y12  0.147  0.100   0.100    0.047    0.047
## 235 Y10 ~~ Y13  0.179 -0.089  -0.089   -0.060   -0.060
## 236 Y10 ~~ Y14  0.001  0.010   0.010    0.002    0.002
## 237 Y10 ~~ Y15  0.010 -0.025  -0.025   -0.014   -0.014
## 238 Y10 ~~ Y16  0.752 -0.226  -0.226   -0.100   -0.100
## 239 Y11 ~~ Y12  0.005  0.021   0.021    0.011    0.011
## 240 Y11 ~~ Y13  0.013  0.028   0.028    0.020    0.020
## 241 Y11 ~~ Y14  0.241  0.231   0.231    0.053    0.053
## 242 Y11 ~~ Y15  0.412 -0.193  -0.193   -0.114   -0.114
## 243 Y11 ~~ Y16  0.237 -0.142  -0.142   -0.067   -0.067
## 245 Y12 ~~ Y14  0.413 -0.392  -0.392   -0.061   -0.061
## 246 Y12 ~~ Y15  1.058  0.427   0.427    0.172    0.172
## 247 Y12 ~~ Y16  1.136  0.391   0.391    0.126    0.126
## 248 Y13 ~~ Y14  0.423  0.385   0.385    0.087    0.087
## 249 Y13 ~~ Y15  0.776 -0.363  -0.363   -0.213   -0.213
## 250 Y13 ~~ Y16  0.827 -0.273  -0.273   -0.128   -0.128
## 251 Y14 ~~ Y15  0.043 -0.277  -0.277   -0.051   -0.051
## 252 Y14 ~~ Y16  0.868 -0.533  -0.533   -0.079   -0.079
## 253 Y15 ~~ Y16  1.292  0.451   0.451    0.173    0.173
SEM.2step.measurement.model3.fit <- update(SEM.2step.initial.measurement.fit, model = c(SEM.2step.initial.measurement.model, 'Y6 ~~ Y14', 
'Y5 ~~ Y13'))
summary(SEM.2step.measurement.model3.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 105 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        49
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               130.357
##   Degrees of freedom                                87
##   P-value (Chi-square)                           0.002
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.945
##   Tucker-Lewis Index (TLI)                       0.924
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2707.034
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5512.067
##   Bayesian (BIC)                              5631.177
##   Sample-size adjusted Bayesian (BIC)         5476.606
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.077
##   90 Percent confidence interval - lower         0.048
##   90 Percent confidence interval - upper         0.103
##   P-value RMSEA <= 0.05                          0.062
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.073
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.256    0.207   10.894    0.000    2.256    0.923
##     Y2                1.531    0.153    9.979    0.000    1.531    0.875
##     Y3                2.398    0.238   10.080    0.000    2.398    0.880
##   F2 =~                                                                 
##     Y4                1.728    0.321    5.377    0.000    1.728    0.852
##     Y5                0.887    0.245    3.627    0.000    0.887    0.420
##   F3 =~                                                                 
##     Y6                3.275    0.435    7.522    0.000    3.275    0.768
##     Y7                1.175    0.204    5.774    0.000    1.175    0.622
##     Y8                0.759    0.217    3.500    0.000    0.759    0.402
##   F4 =~                                                                 
##     Y9                1.000                               2.359    0.902
##     Y10               0.596    0.070    8.560    0.000    1.407    0.749
##     Y11               1.087    0.090   12.108    0.000    2.563    0.908
##   F5 =~                                                                 
##     Y12               1.000                               2.028    0.872
##     Y13               0.699    0.113    6.175    0.000    1.418    0.647
##   F6 =~                                                                 
##     Y14               1.000                               2.878    0.601
##     Y15               0.796    0.148    5.392    0.000    2.290    0.866
##     Y16               0.247    0.083    2.963    0.003    0.710    0.368
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.508    1.797    4.178    0.000    7.508    0.720
##  .Y5 ~~                                                                 
##    .Y13               2.196    0.460    4.775    0.000    2.196    0.686
##   F1 ~~                                                                 
##     F2                0.402    0.124    3.235    0.001    0.402    0.402
##     F3                0.477    0.106    4.504    0.000    0.477    0.477
##     F4                1.869    0.248    7.535    0.000    0.793    0.793
##     F5                0.873    0.248    3.528    0.000    0.430    0.430
##     F6                1.287    0.404    3.184    0.001    0.447    0.447
##   F2 ~~                                                                 
##     F3                0.398    0.137    2.904    0.004    0.398    0.398
##     F4                0.736    0.319    2.308    0.021    0.312    0.312
##     F5                1.214    0.302    4.015    0.000    0.599    0.599
##     F6                0.783    0.432    1.815    0.070    0.272    0.272
##   F3 ~~                                                                 
##     F4                1.432    0.287    4.995    0.000    0.607    0.607
##     F5                1.231    0.263    4.680    0.000    0.607    0.607
##     F6                2.600    0.528    4.926    0.000    0.903    0.903
##   F4 ~~                                                                 
##     F5                2.583    0.687    3.762    0.000    0.540    0.540
##     F6                4.258    1.204    3.537    0.000    0.627    0.627
##   F5 ~~                                                                 
##     F6                4.357    1.159    3.760    0.000    0.747    0.747
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.889    0.245    3.633    0.000    0.889    0.149
##    .Y2                0.718    0.148    4.840    0.000    0.718    0.235
##    .Y3                1.669    0.352    4.740    0.000    1.669    0.225
##    .Y4                1.127    0.944    1.194    0.233    1.127    0.274
##    .Y5                3.682    0.625    5.890    0.000    3.682    0.824
##    .Y6                7.445    1.817    4.098    0.000    7.445    0.410
##    .Y7                2.186    0.392    5.582    0.000    2.186    0.613
##    .Y8                2.990    0.481    6.216    0.000    2.990    0.838
##    .Y9                1.272    0.322    3.954    0.000    1.272    0.186
##    .Y10               1.551    0.268    5.796    0.000    1.551    0.439
##    .Y11               1.401    0.369    3.792    0.000    1.401    0.176
##    .Y12               1.297    0.518    2.506    0.012    1.297    0.240
##    .Y13               2.786    0.503    5.534    0.000    2.786    0.581
##    .Y14              14.623    2.516    5.813    0.000   14.623    0.638
##    .Y15               1.748    0.671    2.607    0.009    1.748    0.250
##    .Y16               3.215    0.509    6.316    0.000    3.215    0.864
##     F4                5.563    1.067    5.213    0.000    1.000    1.000
##     F5                4.114    0.941    4.373    0.000    1.000    1.000
##     F6                8.282    2.921    2.836    0.005    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.851
##     Y2                0.765
##     Y3                0.775
##     Y4                0.726
##     Y5                0.176
##     Y6                0.590
##     Y7                0.387
##     Y8                0.162
##     Y9                0.814
##     Y10               0.561
##     Y11               0.824
##     Y12               0.760
##     Y13               0.419
##     Y14               0.362
##     Y15               0.750
##     Y16               0.136
## 
## Modification Indices:
## 
##     lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox
## 56   F1 =~  Y4  0.007 -0.041  -0.041   -0.020   -0.020
## 57   F1 =~  Y5  0.007  0.021   0.021    0.010    0.010
## 58   F1 =~  Y6  0.186 -0.250  -0.250   -0.059   -0.059
## 59   F1 =~  Y7  0.015 -0.028  -0.028   -0.015   -0.015
## 60   F1 =~  Y8  0.950  0.235   0.235    0.124    0.124
## 61   F1 =~  Y9  0.009  0.034   0.034    0.013    0.013
## 62   F1 =~ Y10  0.098 -0.089  -0.089   -0.047   -0.047
## 63   F1 =~ Y11  0.022  0.059   0.059    0.021    0.021
## 64   F1 =~ Y12  0.050  0.069   0.069    0.030    0.030
## 65   F1 =~ Y13  0.050 -0.048  -0.048   -0.022   -0.022
## 66   F1 =~ Y14  2.741  0.852   0.852    0.178    0.178
## 67   F1 =~ Y15  1.198 -0.418  -0.418   -0.158   -0.158
## 68   F1 =~ Y16  0.830 -0.219  -0.219   -0.113   -0.113
## 69   F2 =~  Y1  0.612  0.142   0.142    0.058    0.058
## 70   F2 =~  Y2  1.106  0.146   0.146    0.083    0.083
## 71   F2 =~  Y3  3.619 -0.406  -0.406   -0.149   -0.149
## 72   F2 =~  Y6  1.782 -0.786  -0.786   -0.184   -0.184
## 73   F2 =~  Y7  1.933  0.323   0.323    0.171    0.171
## 74   F2 =~  Y8  0.017  0.033   0.033    0.017    0.017
## 75   F2 =~  Y9  1.131  0.215   0.215    0.082    0.082
## 76   F2 =~ Y10  0.295  0.097   0.097    0.051    0.051
## 77   F2 =~ Y11  2.019 -0.309  -0.309   -0.110   -0.110
## 78   F2 =~ Y12  0.009 -0.040  -0.040   -0.017   -0.017
## 79   F2 =~ Y13  0.009  0.028   0.028    0.013    0.013
## 80   F2 =~ Y14  1.348  0.600   0.600    0.125    0.125
## 81   F2 =~ Y15  1.679 -0.497  -0.497   -0.188   -0.188
## 82   F2 =~ Y16  0.192  0.107   0.107    0.055    0.055
## 83   F3 =~  Y1  0.914 -0.180  -0.180   -0.074   -0.074
## 84   F3 =~  Y2  0.053  0.033   0.033    0.019    0.019
## 85   F3 =~  Y3  0.685  0.183   0.183    0.067    0.067
## 86   F3 =~  Y4  5.630 -1.255  -1.255   -0.619   -0.619
## 87   F3 =~  Y5  5.630  0.644   0.644    0.305    0.305
## 88   F3 =~  Y9  0.109 -0.085  -0.085   -0.033   -0.033
## 89   F3 =~ Y10  0.528  0.160   0.160    0.085    0.085
## 90   F3 =~ Y11  0.030 -0.048  -0.048   -0.017   -0.017
## 91   F3 =~ Y12  0.001  0.012   0.012    0.005    0.005
## 92   F3 =~ Y13  0.001 -0.008  -0.008   -0.004   -0.004
## 93   F3 =~ Y14  0.077  0.472   0.472    0.099    0.099
## 94   F3 =~ Y15  0.050 -0.265  -0.265   -0.100   -0.100
## 95   F3 =~ Y16  0.001 -0.023  -0.023   -0.012   -0.012
## 96   F4 =~  Y1  4.199 -0.266  -0.628   -0.257   -0.257
## 97   F4 =~  Y2  0.398  0.059   0.140    0.080    0.080
## 98   F4 =~  Y3  2.370  0.225   0.530    0.194    0.194
## 99   F4 =~  Y4  0.201 -0.087  -0.205   -0.101   -0.101
## 100  F4 =~  Y5  0.201  0.045   0.105    0.050    0.050
## 101  F4 =~  Y6  0.007 -0.025  -0.059   -0.014   -0.014
## 102  F4 =~  Y7  0.009 -0.011  -0.025   -0.013   -0.013
## 103  F4 =~  Y8  0.088  0.035   0.083    0.044    0.044
## 104  F4 =~ Y12  0.151  0.058   0.136    0.059    0.059
## 105  F4 =~ Y13  0.151 -0.040  -0.095   -0.044   -0.044
## 106  F4 =~ Y14  4.467  0.579   1.365    0.285    0.285
## 107  F4 =~ Y15  2.241 -0.307  -0.724   -0.274   -0.274
## 108  F4 =~ Y16  0.906 -0.117  -0.276   -0.143   -0.143
## 109  F5 =~  Y1  1.306 -0.100  -0.203   -0.083   -0.083
## 110  F5 =~  Y2  1.378  0.078   0.158    0.091    0.091
## 111  F5 =~  Y3  0.011  0.011   0.022    0.008    0.008
## 112  F5 =~  Y4  2.159 -0.520  -1.055   -0.520   -0.520
## 113  F5 =~  Y5  2.158  0.267   0.542    0.256    0.256
## 114  F5 =~  Y6  0.001  0.013   0.027    0.006    0.006
## 115  F5 =~  Y7  0.141 -0.057  -0.115   -0.061   -0.061
## 116  F5 =~  Y8  0.280  0.080   0.163    0.086    0.086
## 117  F5 =~  Y9  0.464  0.077   0.155    0.059    0.059
## 118  F5 =~ Y10  0.197  0.043   0.088    0.047    0.047
## 119  F5 =~ Y11  0.959 -0.119  -0.241   -0.086   -0.086
## 120  F5 =~ Y14  0.976  0.425   0.862    0.180    0.180
## 121  F5 =~ Y15  1.506 -0.394  -0.798   -0.302   -0.302
## 122  F5 =~ Y16  0.324  0.106   0.216    0.112    0.112
## 123  F6 =~  Y1  2.339 -0.095  -0.274   -0.112   -0.112
## 124  F6 =~  Y2  0.108  0.016   0.045    0.026    0.026
## 125  F6 =~  Y3  1.856  0.099   0.286    0.105    0.105
## 126  F6 =~  Y4  5.663 -0.424  -1.220   -0.602   -0.602
## 127  F6 =~  Y5  5.663  0.218   0.627    0.296    0.296
## 128  F6 =~  Y6  2.509  1.033   2.973    0.697    0.697
## 129  F6 =~  Y7  2.695 -0.396  -1.139   -0.603   -0.603
## 130  F6 =~  Y8  0.000  0.003   0.009    0.005    0.005
## 131  F6 =~  Y9  0.034 -0.016  -0.047   -0.018   -0.018
## 132  F6 =~ Y10  0.253  0.038   0.110    0.058    0.058
## 133  F6 =~ Y11  0.027 -0.016  -0.045   -0.016   -0.016
## 134  F6 =~ Y12  0.002  0.009   0.026    0.011    0.011
## 135  F6 =~ Y13  0.002 -0.006  -0.018   -0.008   -0.008
## 136  Y1 ~~  Y2  0.364  0.137   0.137    0.171    0.171
## 137  Y1 ~~  Y3  0.786  0.317   0.317    0.261    0.261
## 138  Y1 ~~  Y4  0.092  0.070   0.070    0.070    0.070
## 139  Y1 ~~  Y5  2.205  0.296   0.296    0.164    0.164
## 140  Y1 ~~  Y6  0.292  0.169   0.169    0.066    0.066
## 141  Y1 ~~  Y7  0.352 -0.122  -0.122   -0.088   -0.088
## 142  Y1 ~~  Y8  0.024  0.036   0.036    0.022    0.022
## 143  Y1 ~~  Y9 10.897  0.619   0.619    0.582    0.582
## 144  Y1 ~~ Y10  6.354 -0.436  -0.436   -0.372   -0.372
## 145  Y1 ~~ Y11  6.682 -0.520  -0.520   -0.466   -0.466
## 146  Y1 ~~ Y12  0.153  0.082   0.082    0.077    0.077
## 147  Y1 ~~ Y13  2.166 -0.263  -0.263   -0.167   -0.167
## 148  Y1 ~~ Y14  0.863 -0.359  -0.359   -0.099   -0.099
## 149  Y1 ~~ Y15  0.140  0.088   0.088    0.071    0.071
## 150  Y1 ~~ Y16  0.180 -0.101  -0.101   -0.060   -0.060
## 151  Y2 ~~  Y3  2.015 -0.327  -0.327   -0.299   -0.299
## 152  Y2 ~~  Y4  0.815  0.160   0.160    0.178    0.178
## 153  Y2 ~~  Y5  1.155 -0.169  -0.169   -0.104   -0.104
## 154  Y2 ~~  Y6  0.077 -0.068  -0.068   -0.029   -0.029
## 155  Y2 ~~  Y7  0.000  0.000   0.000    0.000    0.000
## 156  Y2 ~~  Y8  1.742  0.243   0.243    0.166    0.166
## 157  Y2 ~~  Y9  2.102 -0.213  -0.213   -0.222   -0.222
## 158  Y2 ~~ Y10 11.562  0.468   0.468    0.443    0.443
## 159  Y2 ~~ Y11  0.070 -0.041  -0.041   -0.041   -0.041
## 160  Y2 ~~ Y12  1.663  0.213   0.213    0.221    0.221
## 161  Y2 ~~ Y13  0.027 -0.023  -0.023   -0.016   -0.016
## 162  Y2 ~~ Y14  0.583  0.231   0.231    0.071    0.071
## 163  Y2 ~~ Y15  2.224 -0.274  -0.274   -0.245   -0.245
## 164  Y2 ~~ Y16  0.007  0.016   0.016    0.010    0.010
## 165  Y3 ~~  Y4  1.328 -0.315  -0.315   -0.230   -0.230
## 166  Y3 ~~  Y5  0.598 -0.187  -0.187   -0.076   -0.076
## 167  Y3 ~~  Y6  0.145 -0.143  -0.143   -0.040   -0.040
## 168  Y3 ~~  Y7  0.010  0.025   0.025    0.013    0.013
## 169  Y3 ~~  Y8  0.101 -0.090  -0.090   -0.040   -0.040
## 170  Y3 ~~  Y9  6.229 -0.563  -0.563   -0.387   -0.387
## 171  Y3 ~~ Y10  0.673 -0.173  -0.173   -0.108   -0.108
## 172  Y3 ~~ Y11 12.971  0.870   0.870    0.569    0.569
## 173  Y3 ~~ Y12  3.047 -0.444  -0.444   -0.302   -0.302
## 174  Y3 ~~ Y13  3.574  0.412   0.412    0.191    0.191
## 175  Y3 ~~ Y14  0.176  0.196   0.196    0.040    0.040
## 176  Y3 ~~ Y15  1.229  0.314   0.314    0.184    0.184
## 177  Y3 ~~ Y16  0.010 -0.029  -0.029   -0.012   -0.012
## 179  Y4 ~~  Y6  0.535 -0.454  -0.454   -0.157   -0.157
## 180  Y4 ~~  Y7  0.824  0.271   0.271    0.173    0.173
## 181  Y4 ~~  Y8  0.266 -0.166  -0.166   -0.091   -0.091
## 182  Y4 ~~  Y9  1.931  0.365   0.365    0.305    0.305
## 183  Y4 ~~ Y10  0.089 -0.071  -0.071   -0.054   -0.054
## 184  Y4 ~~ Y11  0.836 -0.258  -0.258   -0.206   -0.206
## 185  Y4 ~~ Y12  0.279  0.301   0.301    0.249    0.249
## 186  Y4 ~~ Y13  0.024  0.061   0.061    0.034    0.034
## 187  Y4 ~~ Y14  0.948  0.634   0.634    0.156    0.156
## 188  Y4 ~~ Y15  4.029 -0.897  -0.897   -0.639   -0.639
## 189  Y4 ~~ Y16  0.192 -0.145  -0.145   -0.076   -0.076
## 190  Y5 ~~  Y6  0.163 -0.170  -0.170   -0.033   -0.033
## 191  Y5 ~~  Y7  4.207  0.531   0.531    0.187    0.187
## 192  Y5 ~~  Y8  1.519 -0.355  -0.355   -0.107   -0.107
## 193  Y5 ~~  Y9  0.050 -0.051  -0.051   -0.023   -0.023
## 194  Y5 ~~ Y10  1.210  0.235   0.235    0.098    0.098
## 195  Y5 ~~ Y11  0.833 -0.221  -0.221   -0.097   -0.097
## 196  Y5 ~~ Y12  1.364 -0.583  -0.583   -0.267   -0.267
## 197  Y5 ~~ Y14  0.035 -0.096  -0.096   -0.013   -0.013
## 198  Y5 ~~ Y15  2.463  0.510   0.510    0.201    0.201
## 199  Y5 ~~ Y16  2.126  0.434   0.434    0.126    0.126
## 200  Y6 ~~  Y7  1.040 -0.822  -0.822   -0.204   -0.204
## 201  Y6 ~~  Y8  0.046  0.111   0.111    0.023    0.023
## 202  Y6 ~~  Y9  0.777 -0.319  -0.319   -0.104   -0.104
## 203  Y6 ~~ Y10  0.020  0.046   0.046    0.014    0.014
## 204  Y6 ~~ Y11  0.559  0.291   0.291    0.090    0.090
## 205  Y6 ~~ Y12  0.043  0.101   0.101    0.033    0.033
## 206  Y6 ~~ Y13  0.006  0.030   0.030    0.006    0.006
## 207  Y6 ~~ Y15  2.141  1.302   1.302    0.361    0.361
## 208  Y6 ~~ Y16  1.222 -0.516  -0.516   -0.105   -0.105
## 209  Y7 ~~  Y8  1.786  0.415   0.415    0.162    0.162
## 210  Y7 ~~  Y9  0.351 -0.140  -0.140   -0.084   -0.084
## 211  Y7 ~~ Y10  2.991  0.388   0.388    0.211    0.211
## 212  Y7 ~~ Y11  0.000 -0.002  -0.002   -0.001   -0.001
## 213  Y7 ~~ Y12  0.351 -0.163  -0.163   -0.097   -0.097
## 214  Y7 ~~ Y13  0.699 -0.195  -0.195   -0.079   -0.079
## 215  Y7 ~~ Y14  0.009 -0.064  -0.064   -0.011   -0.011
## 216  Y7 ~~ Y15  0.004  0.023   0.023    0.012    0.012
## 217  Y7 ~~ Y16  0.518  0.227   0.227    0.085    0.085
## 218  Y8 ~~  Y9  0.097  0.082   0.082    0.042    0.042
## 219  Y8 ~~ Y10  1.617 -0.320  -0.320   -0.148   -0.148
## 220  Y8 ~~ Y11  0.061 -0.070  -0.070   -0.034   -0.034
## 221  Y8 ~~ Y12  0.182  0.129   0.129    0.065    0.065
## 222  Y8 ~~ Y13  1.517  0.319   0.319    0.111    0.111
## 223  Y8 ~~ Y14  3.279 -1.074  -1.074   -0.162   -0.162
## 224  Y8 ~~ Y15  1.907 -0.501  -0.501   -0.219   -0.219
## 225  Y8 ~~ Y16  8.983  1.048   1.048    0.338    0.338
## 226  Y9 ~~ Y10  0.051  0.055   0.055    0.039    0.039
## 227  Y9 ~~ Y11  0.000 -0.008  -0.008   -0.006   -0.006
## 228  Y9 ~~ Y12  0.001 -0.008  -0.008   -0.006   -0.006
## 229  Y9 ~~ Y13  0.005 -0.014  -0.014   -0.007   -0.007
## 230  Y9 ~~ Y14  0.164  0.180   0.180    0.042    0.042
## 231  Y9 ~~ Y15  0.062  0.068   0.068    0.046    0.046
## 232  Y9 ~~ Y16  0.615  0.214   0.214    0.106    0.106
## 233 Y10 ~~ Y11  0.044 -0.055  -0.055   -0.037   -0.037
## 234 Y10 ~~ Y12  0.531  0.164   0.164    0.115    0.115
## 235 Y10 ~~ Y13  0.587 -0.148  -0.148   -0.071   -0.071
## 236 Y10 ~~ Y14  0.000  0.003   0.003    0.001    0.001
## 237 Y10 ~~ Y15  0.007 -0.022  -0.022   -0.013   -0.013
## 238 Y10 ~~ Y16  0.800 -0.232  -0.232   -0.104   -0.104
## 239 Y11 ~~ Y12  0.046 -0.056  -0.056   -0.042   -0.042
## 240 Y11 ~~ Y13  0.079  0.062   0.062    0.031    0.031
## 241 Y11 ~~ Y14  0.209  0.218   0.218    0.048    0.048
## 242 Y11 ~~ Y15  0.577 -0.224  -0.224   -0.143   -0.143
## 243 Y11 ~~ Y16  0.294 -0.158  -0.158   -0.074   -0.074
## 245 Y12 ~~ Y14  1.377 -0.697  -0.697   -0.160   -0.160
## 246 Y12 ~~ Y15  0.068  0.111   0.111    0.074    0.074
## 247 Y12 ~~ Y16  2.244  0.476   0.476    0.233    0.233
## 248 Y13 ~~ Y14  1.156  0.499   0.499    0.078    0.078
## 249 Y13 ~~ Y15  0.092 -0.099  -0.099   -0.045   -0.045
## 250 Y13 ~~ Y16  1.492 -0.329  -0.329   -0.110   -0.110
## 251 Y14 ~~ Y15  0.006  0.103   0.103    0.020    0.020
## 252 Y14 ~~ Y16  0.840 -0.525  -0.525   -0.077   -0.077
## 253 Y15 ~~ Y16  0.517  0.294   0.294    0.124    0.124
SEM.2step.measurement.model4.fit <- update(SEM.2step.initial.measurement.fit, model = c(SEM.2step.initial.measurement.model, 'Y6 ~~ Y14', 
'Y5 ~~ Y13', 'Y3 ~~ Y11'))
summary(SEM.2step.measurement.model4.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 113 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        50
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               116.024
##   Degrees of freedom                                86
##   P-value (Chi-square)                           0.017
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.962
##   Tucker-Lewis Index (TLI)                       0.947
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2699.867
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5499.734
##   Bayesian (BIC)                              5621.274
##   Sample-size adjusted Bayesian (BIC)         5463.548
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.064
##   90 Percent confidence interval - lower         0.029
##   90 Percent confidence interval - upper         0.093
##   P-value RMSEA <= 0.05                          0.216
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.074
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.300    0.204   11.261    0.000    2.300    0.940
##     Y2                1.515    0.154    9.822    0.000    1.515    0.866
##     Y3                2.372    0.238    9.971    0.000    2.372    0.869
##   F2 =~                                                                 
##     Y4                1.731    0.321    5.387    0.000    1.731    0.853
##     Y5                0.881    0.244    3.613    0.000    0.881    0.417
##   F3 =~                                                                 
##     Y6                3.272    0.436    7.511    0.000    3.272    0.768
##     Y7                1.172    0.204    5.757    0.000    1.172    0.621
##     Y8                0.761    0.217    3.506    0.000    0.761    0.403
##   F4 =~                                                                 
##     Y9                1.000                               2.409    0.921
##     Y10               0.581    0.067    8.695    0.000    1.400    0.745
##     Y11               1.040    0.085   12.203    0.000    2.506    0.891
##   F5 =~                                                                 
##     Y12               1.000                               2.036    0.875
##     Y13               0.692    0.113    6.148    0.000    1.410    0.644
##   F6 =~                                                                 
##     Y14               1.000                               2.867    0.599
##     Y15               0.801    0.150    5.355    0.000    2.298    0.869
##     Y16               0.249    0.084    2.969    0.003    0.713    0.370
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.554    1.803    4.189    0.000    7.554    0.722
##  .Y5 ~~                                                                 
##    .Y13               2.205    0.460    4.789    0.000    2.205    0.685
##  .Y3 ~~                                                                 
##    .Y11               0.925    0.274    3.381    0.001    0.925    0.538
##   F1 ~~                                                                 
##     F2                0.410    0.123    3.325    0.001    0.410    0.410
##     F3                0.469    0.106    4.419    0.000    0.469    0.469
##     F4                1.850    0.249    7.444    0.000    0.768    0.768
##     F5                0.865    0.247    3.504    0.000    0.425    0.425
##     F6                1.258    0.400    3.142    0.002    0.439    0.439
##   F2 ~~                                                                 
##     F3                0.396    0.137    2.888    0.004    0.396    0.396
##     F4                0.806    0.324    2.486    0.013    0.335    0.335
##     F5                1.214    0.303    4.010    0.000    0.596    0.596
##     F6                0.771    0.429    1.798    0.072    0.269    0.269
##   F3 ~~                                                                 
##     F4                1.434    0.290    4.949    0.000    0.595    0.595
##     F5                1.231    0.263    4.676    0.000    0.605    0.605
##     F6                2.586    0.529    4.892    0.000    0.902    0.902
##   F4 ~~                                                                 
##     F5                2.640    0.696    3.791    0.000    0.538    0.538
##     F6                4.190    1.202    3.486    0.000    0.607    0.607
##   F5 ~~                                                                 
##     F6                4.339    1.158    3.746    0.000    0.743    0.743
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.691    0.232    2.984    0.003    0.691    0.116
##    .Y2                0.767    0.152    5.045    0.000    0.767    0.251
##    .Y3                1.821    0.368    4.948    0.000    1.821    0.244
##    .Y4                1.117    0.945    1.182    0.237    1.117    0.272
##    .Y5                3.688    0.624    5.905    0.000    3.688    0.826
##    .Y6                7.457    1.820    4.098    0.000    7.457    0.411
##    .Y7                2.193    0.392    5.589    0.000    2.193    0.615
##    .Y8                2.989    0.481    6.215    0.000    2.989    0.838
##    .Y9                1.032    0.305    3.387    0.001    1.032    0.151
##    .Y10               1.568    0.268    5.844    0.000    1.568    0.444
##    .Y11               1.626    0.390    4.174    0.000    1.626    0.206
##    .Y12               1.265    0.519    2.436    0.015    1.265    0.234
##    .Y13               2.808    0.505    5.560    0.000    2.808    0.586
##    .Y14              14.684    2.525    5.815    0.000   14.684    0.641
##    .Y15               1.713    0.677    2.530    0.011    1.713    0.245
##    .Y16               3.211    0.509    6.314    0.000    3.211    0.863
##     F4                5.802    1.074    5.400    0.000    1.000    1.000
##     F5                4.146    0.944    4.393    0.000    1.000    1.000
##     F6                8.221    2.914    2.821    0.005    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.884
##     Y2                0.749
##     Y3                0.756
##     Y4                0.728
##     Y5                0.174
##     Y6                0.589
##     Y7                0.385
##     Y8                0.162
##     Y9                0.849
##     Y10               0.556
##     Y11               0.794
##     Y12               0.766
##     Y13               0.414
##     Y14               0.359
##     Y15               0.755
##     Y16               0.137
## 
## Modification Indices:
## 
##     lhs op rhs     mi    epc sepc.lv sepc.all sepc.nox
## 57   F1 =~  Y4  0.039 -0.099  -0.099   -0.049   -0.049
## 58   F1 =~  Y5  0.039  0.050   0.050    0.024    0.024
## 59   F1 =~  Y6  0.186 -0.246  -0.246   -0.058   -0.058
## 60   F1 =~  Y7  0.016 -0.029  -0.029   -0.015   -0.015
## 61   F1 =~  Y8  0.969  0.234   0.234    0.124    0.124
## 62   F1 =~  Y9  0.119  0.112   0.112    0.043    0.043
## 63   F1 =~ Y10  0.041 -0.052  -0.052   -0.028   -0.028
## 64   F1 =~ Y11  0.042 -0.074  -0.074   -0.026   -0.026
## 65   F1 =~ Y12  0.052  0.070   0.070    0.030    0.030
## 66   F1 =~ Y13  0.052 -0.048  -0.048   -0.022   -0.022
## 67   F1 =~ Y14  2.273  0.764   0.764    0.160    0.160
## 68   F1 =~ Y15  0.943 -0.367  -0.367   -0.139   -0.139
## 69   F1 =~ Y16  0.763 -0.207  -0.207   -0.107   -0.107
## 70   F2 =~  Y1  0.154  0.068   0.068    0.028    0.028
## 71   F2 =~  Y2  0.884  0.131   0.131    0.075    0.075
## 72   F2 =~  Y3  1.715 -0.263  -0.263   -0.096   -0.096
## 73   F2 =~  Y6  1.803 -0.789  -0.789   -0.185   -0.185
## 74   F2 =~  Y7  1.974  0.326   0.326    0.172    0.172
## 75   F2 =~  Y8  0.015  0.031   0.031    0.016    0.016
## 76   F2 =~  Y9  0.204  0.087   0.087    0.033    0.033
## 77   F2 =~ Y10  0.118  0.061   0.061    0.033    0.033
## 78   F2 =~ Y11  0.456 -0.137  -0.137   -0.049   -0.049
## 79   F2 =~ Y12  0.016 -0.054  -0.054   -0.023   -0.023
## 80   F2 =~ Y13  0.016  0.037   0.037    0.017    0.017
## 81   F2 =~ Y14  1.416  0.613   0.613    0.128    0.128
## 82   F2 =~ Y15  1.740 -0.507  -0.507   -0.192   -0.192
## 83   F2 =~ Y16  0.187  0.105   0.105    0.054    0.054
## 84   F3 =~  Y1  1.440 -0.214  -0.214   -0.087   -0.087
## 85   F3 =~  Y2  0.235  0.068   0.068    0.039    0.039
## 86   F3 =~  Y3  0.801  0.184   0.184    0.068    0.068
## 87   F3 =~  Y4  5.592 -1.254  -1.254   -0.618   -0.618
## 88   F3 =~  Y5  5.592  0.638   0.638    0.302    0.302
## 89   F3 =~  Y9  0.218 -0.113  -0.113   -0.043   -0.043
## 90   F3 =~ Y10  0.759  0.188   0.188    0.100    0.100
## 91   F3 =~ Y11  0.011 -0.026  -0.026   -0.009   -0.009
## 92   F3 =~ Y12  0.000 -0.002  -0.002   -0.001   -0.001
## 93   F3 =~ Y13  0.000  0.001   0.001    0.001    0.001
## 94   F3 =~ Y14  0.094  0.518   0.518    0.108    0.108
## 95   F3 =~ Y15  0.061 -0.292  -0.292   -0.110   -0.110
## 96   F3 =~ Y16  0.001 -0.025  -0.025   -0.013   -0.013
## 97   F4 =~  Y1  2.410 -0.171  -0.411   -0.168   -0.168
## 98   F4 =~  Y2  1.888  0.111   0.267    0.153    0.153
## 99   F4 =~  Y3  0.145  0.051   0.124    0.045    0.045
## 100  F4 =~  Y4  0.229 -0.093  -0.223   -0.110   -0.110
## 101  F4 =~  Y5  0.229  0.047   0.114    0.054    0.054
## 102  F4 =~  Y6  0.012 -0.031  -0.074   -0.017   -0.017
## 103  F4 =~  Y7  0.008 -0.010  -0.023   -0.012   -0.012
## 104  F4 =~  Y8  0.107  0.037   0.090    0.048    0.048
## 105  F4 =~ Y12  0.340  0.085   0.206    0.088    0.088
## 106  F4 =~ Y13  0.340 -0.059  -0.142   -0.065   -0.065
## 107  F4 =~ Y14  4.360  0.542   1.306    0.273    0.273
## 108  F4 =~ Y15  2.293 -0.296  -0.713   -0.270   -0.270
## 109  F4 =~ Y16  0.744 -0.101  -0.243   -0.126   -0.126
## 110  F5 =~  Y1  2.364 -0.127  -0.258   -0.105   -0.105
## 111  F5 =~  Y2  1.692  0.085   0.174    0.099    0.099
## 112  F5 =~  Y3  0.269  0.050   0.101    0.037    0.037
## 113  F5 =~  Y4  2.150 -0.519  -1.056   -0.521   -0.521
## 114  F5 =~  Y5  2.150  0.264   0.538    0.254    0.254
## 115  F5 =~  Y6  0.000  0.006   0.012    0.003    0.003
## 116  F5 =~  Y7  0.129 -0.054  -0.109   -0.058   -0.058
## 117  F5 =~  Y8  0.283  0.080   0.163    0.086    0.086
## 118  F5 =~  Y9  0.186  0.046   0.094    0.036    0.036
## 119  F5 =~ Y10  0.240  0.047   0.096    0.051    0.051
## 120  F5 =~ Y11  0.566 -0.084  -0.171   -0.061   -0.061
## 121  F5 =~ Y14  1.049  0.437   0.890    0.186    0.186
## 122  F5 =~ Y15  1.617 -0.407  -0.829   -0.314   -0.314
## 123  F5 =~ Y16  0.338  0.107   0.219    0.113    0.113
## 124  F6 =~  Y1  3.217 -0.106  -0.303   -0.124   -0.124
## 125  F6 =~  Y2  0.342  0.027   0.078    0.045    0.045
## 126  F6 =~  Y3  2.171  0.101   0.289    0.106    0.106
## 127  F6 =~  Y4  5.676 -0.428  -1.227   -0.605   -0.605
## 128  F6 =~  Y5  5.676  0.218   0.624    0.296    0.296
## 129  F6 =~  Y6  2.494  1.035   2.968    0.697    0.697
## 130  F6 =~  Y7  2.690 -0.396  -1.136   -0.601   -0.601
## 131  F6 =~  Y8  0.001  0.005   0.015    0.008    0.008
## 132  F6 =~  Y9  0.011 -0.009  -0.025   -0.010   -0.010
## 133  F6 =~ Y10  0.518  0.053   0.152    0.081    0.081
## 134  F6 =~ Y11  0.135 -0.032  -0.091   -0.032   -0.032
## 135  F6 =~ Y12  0.000  0.003   0.009    0.004    0.004
## 136  F6 =~ Y13  0.000 -0.002  -0.006   -0.003   -0.003
## 137  Y1 ~~  Y2  0.126 -0.087  -0.087   -0.120   -0.120
## 138  Y1 ~~  Y3  2.250  0.540   0.540    0.482    0.482
## 139  Y1 ~~  Y4  0.013  0.025   0.025    0.029    0.029
## 140  Y1 ~~  Y5  2.019  0.269   0.269    0.169    0.169
## 141  Y1 ~~  Y6  0.541  0.218   0.218    0.096    0.096
## 142  Y1 ~~  Y7  0.431 -0.129  -0.129   -0.105   -0.105
## 143  Y1 ~~  Y8  0.004  0.014   0.014    0.010    0.010
## 144  Y1 ~~  Y9  8.250  0.550   0.550    0.651    0.651
## 145  Y1 ~~ Y10  9.939 -0.532  -0.532   -0.511   -0.511
## 146  Y1 ~~ Y11  1.877 -0.289  -0.289   -0.273   -0.273
## 147  Y1 ~~ Y12  0.156  0.079   0.079    0.084    0.084
## 148  Y1 ~~ Y13  2.599 -0.275  -0.275   -0.197   -0.197
## 149  Y1 ~~ Y14  0.920 -0.352  -0.352   -0.110   -0.110
## 150  Y1 ~~ Y15  0.000  0.002   0.002    0.002    0.002
## 151  Y1 ~~ Y16  0.354 -0.135  -0.135   -0.090   -0.090
## 152  Y2 ~~  Y3  1.124 -0.228  -0.228   -0.193   -0.193
## 153  Y2 ~~  Y4  0.670  0.145   0.145    0.157    0.157
## 154  Y2 ~~  Y5  1.401 -0.188  -0.188   -0.112   -0.112
## 155  Y2 ~~  Y6  0.045 -0.052  -0.052   -0.022   -0.022
## 156  Y2 ~~  Y7  0.003  0.009   0.009    0.007    0.007
## 157  Y2 ~~  Y8  1.542  0.231   0.231    0.153    0.153
## 158  Y2 ~~  Y9  6.296 -0.370  -0.370   -0.416   -0.416
## 159  Y2 ~~ Y10 11.124  0.468   0.468    0.427    0.427
## 160  Y2 ~~ Y11  2.133  0.222   0.222    0.199    0.199
## 161  Y2 ~~ Y12  1.400  0.196   0.196    0.199    0.199
## 162  Y2 ~~ Y13  0.006 -0.011  -0.011   -0.008   -0.008
## 163  Y2 ~~ Y14  0.751  0.264   0.264    0.079    0.079
## 164  Y2 ~~ Y15  2.619 -0.299  -0.299   -0.260   -0.260
## 165  Y2 ~~ Y16  0.000  0.002   0.002    0.001    0.001
## 166  Y3 ~~  Y4  0.682 -0.209  -0.209   -0.147   -0.147
## 167  Y3 ~~  Y5  0.416 -0.143  -0.143   -0.055   -0.055
## 168  Y3 ~~  Y6  0.479 -0.240  -0.240   -0.065   -0.065
## 169  Y3 ~~  Y7  0.049  0.051   0.051    0.026    0.026
## 170  Y3 ~~  Y8  0.035 -0.048  -0.048   -0.021   -0.021
## 171  Y3 ~~  Y9  0.564 -0.193  -0.193   -0.141   -0.141
## 172  Y3 ~~ Y10  0.144  0.077   0.077    0.045    0.045
## 173  Y3 ~~ Y12  2.658 -0.382  -0.382   -0.252   -0.252
## 174  Y3 ~~ Y13  4.178  0.408   0.408    0.181    0.181
## 175  Y3 ~~ Y14  0.120  0.149   0.149    0.029    0.029
## 176  Y3 ~~ Y15  2.489  0.414   0.414    0.235    0.235
## 177  Y3 ~~ Y16  0.038  0.052   0.052    0.021    0.021
## 179  Y4 ~~  Y6  0.529 -0.451  -0.451   -0.156   -0.156
## 180  Y4 ~~  Y7  0.822  0.270   0.270    0.173    0.173
## 181  Y4 ~~  Y8  0.247 -0.160  -0.160   -0.088   -0.088
## 182  Y4 ~~  Y9  1.055  0.255   0.255    0.237    0.237
## 183  Y4 ~~ Y10  0.239 -0.116  -0.116   -0.088   -0.088
## 184  Y4 ~~ Y11  0.257 -0.132  -0.132   -0.098   -0.098
## 185  Y4 ~~ Y12  0.219  0.267   0.267    0.224    0.224
## 186  Y4 ~~ Y13  0.040  0.079   0.079    0.044    0.044
## 187  Y4 ~~ Y14  0.945  0.632   0.632    0.156    0.156
## 188  Y4 ~~ Y15  3.861 -0.884  -0.884   -0.639   -0.639
## 189  Y4 ~~ Y16  0.175 -0.138  -0.138   -0.073   -0.073
## 190  Y5 ~~  Y6  0.159 -0.168  -0.168   -0.032   -0.032
## 191  Y5 ~~  Y7  4.123  0.526   0.526    0.185    0.185
## 192  Y5 ~~  Y8  1.508 -0.353  -0.353   -0.106   -0.106
## 193  Y5 ~~  Y9  0.243 -0.106  -0.106   -0.054   -0.054
## 194  Y5 ~~ Y10  1.008  0.215   0.215    0.089    0.089
## 195  Y5 ~~ Y11  0.231 -0.107  -0.107   -0.044   -0.044
## 196  Y5 ~~ Y12  1.290 -0.561  -0.561   -0.260   -0.260
## 197  Y5 ~~ Y14  0.045 -0.108  -0.108   -0.015   -0.015
## 198  Y5 ~~ Y15  2.347  0.501   0.501    0.199    0.199
## 199  Y5 ~~ Y16  2.115  0.433   0.433    0.126    0.126
## 200  Y6 ~~  Y7  1.019 -0.811  -0.811   -0.201   -0.201
## 201  Y6 ~~  Y8  0.042  0.105   0.105    0.022    0.022
## 202  Y6 ~~  Y9  1.286 -0.388  -0.388   -0.140   -0.140
## 203  Y6 ~~ Y10  0.020  0.046   0.046    0.013    0.013
## 204  Y6 ~~ Y11  1.088  0.373   0.373    0.107    0.107
## 205  Y6 ~~ Y12  0.037  0.094   0.094    0.031    0.031
## 206  Y6 ~~ Y13  0.006  0.029   0.029    0.006    0.006
## 207  Y6 ~~ Y15  2.132  1.309   1.309    0.366    0.366
## 208  Y6 ~~ Y16  1.233 -0.518  -0.518   -0.106   -0.106
## 209  Y7 ~~  Y8  1.787  0.415   0.415    0.162    0.162
## 210  Y7 ~~  Y9  0.419 -0.146  -0.146   -0.097   -0.097
## 211  Y7 ~~ Y10  3.079  0.394   0.394    0.213    0.213
## 212  Y7 ~~ Y11  0.001 -0.007  -0.007   -0.004   -0.004
## 213  Y7 ~~ Y12  0.347 -0.161  -0.161   -0.097   -0.097
## 214  Y7 ~~ Y13  0.650 -0.188  -0.188   -0.076   -0.076
## 215  Y7 ~~ Y14  0.004 -0.040  -0.040   -0.007   -0.007
## 216  Y7 ~~ Y15  0.007  0.033   0.033    0.017    0.017
## 217  Y7 ~~ Y16  0.521  0.227   0.227    0.086    0.086
## 218  Y8 ~~  Y9  0.075  0.069   0.069    0.039    0.039
## 219  Y8 ~~ Y10  1.623 -0.321  -0.321   -0.148   -0.148
## 220  Y8 ~~ Y11  0.009 -0.024  -0.024   -0.011   -0.011
## 221  Y8 ~~ Y12  0.175  0.126   0.126    0.065    0.065
## 222  Y8 ~~ Y13  1.508  0.319   0.319    0.110    0.110
## 223  Y8 ~~ Y14  3.232 -1.068  -1.068   -0.161   -0.161
## 224  Y8 ~~ Y15  2.103 -0.528  -0.528   -0.233   -0.233
## 225  Y8 ~~ Y16  8.968  1.046   1.046    0.338    0.338
## 226  Y9 ~~ Y10  0.187 -0.107  -0.107   -0.084   -0.084
## 227  Y9 ~~ Y11  0.063  0.126   0.126    0.097    0.097
## 228  Y9 ~~ Y12  0.307 -0.128  -0.128   -0.112   -0.112
## 229  Y9 ~~ Y13  0.217  0.091   0.091    0.053    0.053
## 230  Y9 ~~ Y14  0.291  0.228   0.228    0.059    0.059
## 231  Y9 ~~ Y15  0.354  0.155   0.155    0.116    0.116
## 232  Y9 ~~ Y16  0.746  0.224   0.224    0.123    0.123
## 233 Y10 ~~ Y11  0.040  0.049   0.049    0.031    0.031
## 234 Y10 ~~ Y12  0.340  0.131   0.131    0.093    0.093
## 235 Y10 ~~ Y13  0.294 -0.105  -0.105   -0.050   -0.050
## 236 Y10 ~~ Y14  0.003  0.023   0.023    0.005    0.005
## 237 Y10 ~~ Y15  0.006  0.020   0.020    0.012    0.012
## 238 Y10 ~~ Y16  0.837 -0.237  -0.237   -0.106   -0.106
## 239 Y11 ~~ Y12  0.311  0.134   0.134    0.093    0.093
## 240 Y11 ~~ Y13  0.332 -0.116  -0.116   -0.055   -0.055
## 241 Y11 ~~ Y14  0.072  0.118   0.118    0.024    0.024
## 242 Y11 ~~ Y15  1.452 -0.327  -0.327   -0.196   -0.196
## 243 Y11 ~~ Y16  0.371 -0.163  -0.163   -0.071   -0.071
## 245 Y12 ~~ Y14  1.377 -0.698  -0.698   -0.162   -0.162
## 246 Y12 ~~ Y15  0.029  0.073   0.073    0.050    0.050
## 247 Y12 ~~ Y16  2.223  0.472   0.472    0.234    0.234
## 248 Y13 ~~ Y14  1.212  0.510   0.510    0.079    0.079
## 249 Y13 ~~ Y15  0.052 -0.075  -0.075   -0.034   -0.034
## 250 Y13 ~~ Y16  1.482 -0.329  -0.329   -0.109   -0.109
## 251 Y14 ~~ Y15  0.013  0.146   0.146    0.029    0.029
## 252 Y14 ~~ Y16  0.821 -0.519  -0.519   -0.076   -0.076
## 253 Y15 ~~ Y16  0.447  0.275   0.275    0.117    0.117
SEM.2step.measurement.model5.fit <- update(SEM.2step.initial.measurement.fit, model = c(SEM.2step.initial.measurement.model, 'Y6 ~~ Y14', 
'Y5 ~~ Y13', 'Y3 ~~ Y11', 'Y2 ~~ Y10'))
summary(SEM.2step.measurement.model5.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 112 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               103.086
##   Degrees of freedom                                85
##   P-value (Chi-square)                           0.089
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.977
##   Tucker-Lewis Index (TLI)                       0.967
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2693.398
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5488.796
##   Bayesian (BIC)                              5612.767
##   Sample-size adjusted Bayesian (BIC)         5451.887
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.050
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.082
##   P-value RMSEA <= 0.05                          0.474
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.349    0.201   11.711    0.000    2.349    0.961
##     Y2                1.501    0.154    9.753    0.000    1.501    0.852
##     Y3                2.309    0.237    9.743    0.000    2.309    0.853
##   F2 =~                                                                 
##     Y4                1.729    0.320    5.408    0.000    1.729    0.853
##     Y5                0.883    0.244    3.626    0.000    0.883    0.418
##   F3 =~                                                                 
##     Y6                3.270    0.436    7.495    0.000    3.270    0.767
##     Y7                1.171    0.204    5.746    0.000    1.171    0.620
##     Y8                0.761    0.217    3.509    0.000    0.761    0.403
##   F4 =~                                                                 
##     Y9                1.000                               2.459    0.941
##     Y10               0.543    0.063    8.560    0.000    1.336    0.720
##     Y11               0.987    0.081   12.119    0.000    2.427    0.872
##   F5 =~                                                                 
##     Y12               1.000                               2.033    0.874
##     Y13               0.695    0.113    6.154    0.000    1.413    0.645
##   F6 =~                                                                 
##     Y14               1.000                               2.861    0.598
##     Y15               0.805    0.150    5.349    0.000    2.302    0.871
##     Y16               0.250    0.084    2.975    0.003    0.714    0.370
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.616    1.809    4.211    0.000    7.616    0.725
##  .Y5 ~~                                                                 
##    .Y13               2.201    0.460    4.784    0.000    2.201    0.685
##  .Y3 ~~                                                                 
##    .Y11               1.009    0.284    3.547    0.000    1.009    0.522
##  .Y2 ~~                                                                 
##    .Y10               0.524    0.157    3.331    0.001    0.524    0.442
##   F1 ~~                                                                 
##     F2                0.410    0.122    3.350    0.001    0.410    0.410
##     F3                0.451    0.107    4.222    0.000    0.451    0.451
##     F4                1.853    0.249    7.442    0.000    0.754    0.754
##     F5                0.831    0.246    3.380    0.001    0.409    0.409
##     F6                1.194    0.394    3.028    0.002    0.417    0.417
##   F2 ~~                                                                 
##     F3                0.396    0.137    2.890    0.004    0.396    0.396
##     F4                0.826    0.329    2.508    0.012    0.336    0.336
##     F5                1.214    0.302    4.019    0.000    0.597    0.597
##     F6                0.769    0.428    1.799    0.072    0.269    0.269
##   F3 ~~                                                                 
##     F4                1.441    0.293    4.913    0.000    0.586    0.586
##     F5                1.229    0.263    4.668    0.000    0.604    0.604
##     F6                2.576    0.528    4.876    0.000    0.900    0.900
##   F4 ~~                                                                 
##     F5                2.661    0.704    3.781    0.000    0.532    0.532
##     F6                4.242    1.215    3.492    0.000    0.603    0.603
##   F5 ~~                                                                 
##     F6                4.320    1.156    3.738    0.000    0.743    0.743
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.462    0.216    2.136    0.033    0.462    0.077
##    .Y2                0.847    0.160    5.308    0.000    0.847    0.273
##    .Y3                2.001    0.377    5.311    0.000    2.001    0.273
##    .Y4                1.122    0.938    1.195    0.232    1.122    0.273
##    .Y5                3.688    0.625    5.906    0.000    3.688    0.825
##    .Y6                7.493    1.829    4.098    0.000    7.493    0.412
##    .Y7                2.196    0.393    5.588    0.000    2.196    0.616
##    .Y8                2.987    0.481    6.213    0.000    2.987    0.837
##    .Y9                0.787    0.298    2.638    0.008    0.787    0.115
##    .Y10               1.663    0.279    5.963    0.000    1.663    0.482
##    .Y11               1.863    0.404    4.608    0.000    1.863    0.240
##    .Y12               1.277    0.519    2.460    0.014    1.277    0.236
##    .Y13               2.797    0.504    5.546    0.000    2.797    0.583
##    .Y14              14.722    2.528    5.823    0.000   14.722    0.643
##    .Y15               1.693    0.677    2.502    0.012    1.693    0.242
##    .Y16               3.209    0.508    6.314    0.000    3.209    0.863
##     F4                6.048    1.082    5.587    0.000    1.000    1.000
##     F5                4.134    0.943    4.385    0.000    1.000    1.000
##     F6                8.185    2.908    2.815    0.005    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.923
##     Y2                0.727
##     Y3                0.727
##     Y4                0.727
##     Y5                0.175
##     Y6                0.588
##     Y7                0.384
##     Y8                0.163
##     Y9                0.885
##     Y10               0.518
##     Y11               0.760
##     Y12               0.764
##     Y13               0.417
##     Y14               0.357
##     Y15               0.758
##     Y16               0.137
## 
## Modification Indices:
## 
##     lhs op rhs    mi    epc sepc.lv sepc.all sepc.nox
## 58   F1 =~  Y4 0.043 -0.102  -0.102   -0.050   -0.050
## 59   F1 =~  Y5 0.043  0.052   0.052    0.025    0.025
## 60   F1 =~  Y6 0.128 -0.199  -0.199   -0.047   -0.047
## 61   F1 =~  Y7 0.059 -0.053  -0.053   -0.028   -0.028
## 62   F1 =~  Y8 1.079  0.242   0.242    0.128    0.128
## 63   F1 =~  Y9 0.016 -0.039  -0.039   -0.015   -0.015
## 64   F1 =~ Y10 0.259 -0.122  -0.122   -0.065   -0.065
## 65   F1 =~ Y11 0.257  0.161   0.161    0.058    0.058
## 66   F1 =~ Y12 0.092  0.091   0.091    0.039    0.039
## 67   F1 =~ Y13 0.092 -0.063  -0.063   -0.029   -0.029
## 68   F1 =~ Y14 1.945  0.687   0.687    0.144    0.144
## 69   F1 =~ Y15 0.790 -0.327  -0.327   -0.124   -0.124
## 70   F1 =~ Y16 0.679 -0.191  -0.191   -0.099   -0.099
## 71   F2 =~  Y1 0.039  0.033   0.033    0.013    0.013
## 72   F2 =~  Y2 0.692  0.107   0.107    0.061    0.061
## 73   F2 =~  Y3 1.123 -0.208  -0.208   -0.077   -0.077
## 74   F2 =~  Y6 1.796 -0.788  -0.788   -0.185   -0.185
## 75   F2 =~  Y7 1.952  0.324   0.324    0.172    0.172
## 76   F2 =~  Y8 0.017  0.033   0.033    0.017    0.017
## 77   F2 =~  Y9 0.089  0.058   0.058    0.022    0.022
## 78   F2 =~ Y10 0.009  0.016   0.016    0.008    0.008
## 79   F2 =~ Y11 0.138 -0.074  -0.074   -0.026   -0.026
## 80   F2 =~ Y12 0.009 -0.041  -0.041   -0.017   -0.017
## 81   F2 =~ Y13 0.009  0.028   0.028    0.013    0.013
## 82   F2 =~ Y14 1.446  0.619   0.619    0.129    0.129
## 83   F2 =~ Y15 1.769 -0.512  -0.512   -0.194   -0.194
## 84   F2 =~ Y16 0.187  0.105   0.105    0.054    0.054
## 85   F3 =~  Y1 1.492 -0.206  -0.206   -0.084   -0.084
## 86   F3 =~  Y2 0.086  0.038   0.038    0.022    0.022
## 87   F3 =~  Y3 1.372  0.232   0.232    0.086    0.086
## 88   F3 =~  Y4 5.668 -1.258  -1.258   -0.621   -0.621
## 89   F3 =~  Y5 5.668  0.643   0.643    0.304    0.304
## 90   F3 =~  Y9 0.847 -0.222  -0.222   -0.085   -0.085
## 91   F3 =~ Y10 1.039  0.202   0.202    0.109    0.109
## 92   F3 =~ Y11 0.063  0.061   0.061    0.022    0.022
## 93   F3 =~ Y12 0.000  0.008   0.008    0.004    0.004
## 94   F3 =~ Y13 0.000 -0.006  -0.006   -0.003   -0.003
## 95   F3 =~ Y14 0.054  0.394   0.394    0.082    0.082
## 96   F3 =~ Y15 0.038 -0.229  -0.229   -0.087   -0.087
## 97   F3 =~ Y16 0.000 -0.010  -0.010   -0.005   -0.005
## 98   F4 =~  Y1 2.711 -0.163  -0.402   -0.164   -0.164
## 99   F4 =~  Y2 0.765  0.065   0.160    0.091    0.091
## 100  F4 =~  Y3 1.190  0.129   0.317    0.117    0.117
## 101  F4 =~  Y4 0.262 -0.096  -0.237   -0.117   -0.117
## 102  F4 =~  Y5 0.262  0.049   0.121    0.057    0.057
## 103  F4 =~  Y6 0.006 -0.021  -0.051   -0.012   -0.012
## 104  F4 =~  Y7 0.011 -0.011  -0.027   -0.014   -0.014
## 105  F4 =~  Y8 0.089  0.033   0.081    0.043    0.043
## 106  F4 =~ Y12 0.299  0.077   0.190    0.081    0.081
## 107  F4 =~ Y13 0.299 -0.054  -0.132   -0.060   -0.060
## 108  F4 =~ Y14 3.746  0.486   1.195    0.250    0.250
## 109  F4 =~ Y15 1.957 -0.265  -0.652   -0.246   -0.246
## 110  F4 =~ Y16 0.645 -0.091  -0.224   -0.116   -0.116
## 111  F5 =~  Y1 3.115 -0.138  -0.282   -0.115   -0.115
## 112  F5 =~  Y2 1.728  0.080   0.162    0.092    0.092
## 113  F5 =~  Y3 0.660  0.075   0.153    0.056    0.056
## 114  F5 =~  Y4 2.168 -0.519  -1.055   -0.520   -0.520
## 115  F5 =~  Y5 2.168  0.265   0.539    0.255    0.255
## 116  F5 =~  Y6 0.000 -0.001  -0.002   -0.001   -0.001
## 117  F5 =~  Y7 0.115 -0.051  -0.103   -0.055   -0.055
## 118  F5 =~  Y8 0.281  0.080   0.163    0.086    0.086
## 119  F5 =~  Y9 0.063  0.027   0.055    0.021    0.021
## 120  F5 =~ Y10 0.028  0.015   0.030    0.016    0.016
## 121  F5 =~ Y11 0.138 -0.040  -0.082   -0.029   -0.029
## 122  F5 =~ Y14 1.092  0.445   0.905    0.189    0.189
## 123  F5 =~ Y15 1.661 -0.413  -0.840   -0.318   -0.318
## 124  F5 =~ Y16 0.334  0.107   0.217    0.113    0.113
## 125  F6 =~  Y1 3.521 -0.105  -0.300   -0.123   -0.123
## 126  F6 =~  Y2 0.281  0.023   0.066    0.037    0.037
## 127  F6 =~  Y3 2.989  0.114   0.326    0.121    0.121
## 128  F6 =~  Y4 5.700 -0.427  -1.220   -0.602   -0.602
## 129  F6 =~  Y5 5.700  0.218   0.623    0.295    0.295
## 130  F6 =~  Y6 2.465  1.035   2.960    0.694    0.694
## 131  F6 =~  Y7 2.544 -0.386  -1.104   -0.585   -0.585
## 132  F6 =~  Y8 0.000 -0.005  -0.014   -0.007   -0.007
## 133  F6 =~  Y9 0.234 -0.040  -0.115   -0.044   -0.044
## 134  F6 =~ Y10 0.605  0.053   0.152    0.082    0.082
## 135  F6 =~ Y11 0.001 -0.003  -0.007   -0.003   -0.003
## 136  F6 =~ Y12 0.001  0.008   0.022    0.009    0.009
## 137  F6 =~ Y13 0.001 -0.005  -0.015   -0.007   -0.007
## 138  Y1 ~~  Y2 0.152  0.095   0.095    0.152    0.152
## 139  Y1 ~~  Y3 0.884  0.340   0.340    0.354    0.354
## 140  Y1 ~~  Y4 0.053 -0.048  -0.048   -0.066   -0.066
## 141  Y1 ~~  Y5 3.226  0.322   0.322    0.246    0.246
## 142  Y1 ~~  Y6 0.712  0.238   0.238    0.128    0.128
## 143  Y1 ~~  Y7 0.109 -0.061  -0.061   -0.061   -0.061
## 144  Y1 ~~  Y8 0.111 -0.069  -0.069   -0.059   -0.059
## 145  Y1 ~~  Y9 4.337  0.433   0.433    0.719    0.719
## 146  Y1 ~~ Y10 3.126 -0.317  -0.317   -0.361   -0.361
## 147  Y1 ~~ Y11 2.673 -0.353  -0.353   -0.380   -0.380
## 148  Y1 ~~ Y12 0.225  0.090   0.090    0.117    0.117
## 149  Y1 ~~ Y13 3.331 -0.293  -0.293   -0.258   -0.258
## 150  Y1 ~~ Y14 1.160 -0.373  -0.373   -0.143   -0.143
## 151  Y1 ~~ Y15 0.013  0.024   0.024    0.027    0.027
## 152  Y1 ~~ Y16 0.734 -0.182  -0.182   -0.150   -0.150
## 153  Y2 ~~  Y3 1.303 -0.229  -0.229   -0.176   -0.176
## 154  Y2 ~~  Y4 1.051  0.168   0.168    0.173    0.173
## 155  Y2 ~~  Y5 3.243 -0.265  -0.265   -0.150   -0.150
## 156  Y2 ~~  Y6 0.105 -0.073  -0.073   -0.029   -0.029
## 157  Y2 ~~  Y7 0.324 -0.088  -0.088   -0.064   -0.064
## 158  Y2 ~~  Y8 3.352  0.316   0.316    0.198    0.198
## 159  Y2 ~~  Y9 2.517 -0.224  -0.224   -0.275   -0.275
## 160  Y2 ~~ Y11 4.708  0.315   0.315    0.251    0.251
## 161  Y2 ~~ Y12 0.953  0.150   0.150    0.144    0.144
## 162  Y2 ~~ Y13 0.148  0.051   0.051    0.033    0.033
## 163  Y2 ~~ Y14 0.947  0.275   0.275    0.078    0.078
## 164  Y2 ~~ Y15 2.336 -0.261  -0.261   -0.218   -0.218
## 165  Y2 ~~ Y16 0.230  0.085   0.085    0.052    0.052
## 166  Y3 ~~  Y4 0.472 -0.171  -0.171   -0.114   -0.114
## 167  Y3 ~~  Y5 0.321 -0.125  -0.125   -0.046   -0.046
## 168  Y3 ~~  Y6 0.536 -0.251  -0.251   -0.065   -0.065
## 169  Y3 ~~  Y7 0.138  0.086   0.086    0.041    0.041
## 170  Y3 ~~  Y8 0.089 -0.077  -0.077   -0.032   -0.032
## 171  Y3 ~~  Y9 0.886 -0.247  -0.247   -0.197   -0.197
## 172  Y3 ~~ Y10 2.266  0.294   0.294    0.161    0.161
## 173  Y3 ~~ Y12 2.487 -0.367  -0.367   -0.229   -0.229
## 174  Y3 ~~ Y13 3.849  0.391   0.391    0.165    0.165
## 175  Y3 ~~ Y14 0.196  0.189   0.189    0.035    0.035
## 176  Y3 ~~ Y15 2.175  0.381   0.381    0.207    0.207
## 177  Y3 ~~ Y16 0.022  0.039   0.039    0.015    0.015
## 179  Y4 ~~  Y6 0.536 -0.453  -0.453   -0.156   -0.156
## 180  Y4 ~~  Y7 0.888  0.281   0.281    0.179    0.179
## 181  Y4 ~~  Y8 0.259 -0.164  -0.164   -0.090   -0.090
## 182  Y4 ~~  Y9 1.434  0.293   0.293    0.312    0.312
## 183  Y4 ~~ Y10 0.603 -0.172  -0.172   -0.126   -0.126
## 184  Y4 ~~ Y11 0.298 -0.139  -0.139   -0.096   -0.096
## 185  Y4 ~~ Y12 0.218  0.265   0.265    0.222    0.222
## 186  Y4 ~~ Y13 0.049  0.087   0.087    0.049    0.049
## 187  Y4 ~~ Y14 0.929  0.625   0.625    0.154    0.154
## 188  Y4 ~~ Y15 3.869 -0.883  -0.883   -0.641   -0.641
## 189  Y4 ~~ Y16 0.171 -0.137  -0.137   -0.072   -0.072
## 190  Y5 ~~  Y6 0.170 -0.173  -0.173   -0.033   -0.033
## 191  Y5 ~~  Y7 4.120  0.526   0.526    0.185    0.185
## 192  Y5 ~~  Y8 1.536 -0.357  -0.357   -0.107   -0.107
## 193  Y5 ~~  Y9 0.655 -0.169  -0.169   -0.099   -0.099
## 194  Y5 ~~ Y10 2.670  0.324   0.324    0.131    0.131
## 195  Y5 ~~ Y11 0.277 -0.118  -0.118   -0.045   -0.045
## 196  Y5 ~~ Y12 1.375 -0.579  -0.579   -0.267   -0.267
## 197  Y5 ~~ Y14 0.044 -0.108  -0.108   -0.015   -0.015
## 198  Y5 ~~ Y15 2.369  0.503   0.503    0.201    0.201
## 199  Y5 ~~ Y16 2.115  0.433   0.433    0.126    0.126
## 200  Y6 ~~  Y7 0.996 -0.803  -0.803   -0.198   -0.198
## 201  Y6 ~~  Y8 0.036  0.099   0.099    0.021    0.021
## 202  Y6 ~~  Y9 1.671 -0.436  -0.436   -0.180   -0.180
## 203  Y6 ~~ Y10 0.133  0.111   0.111    0.032    0.032
## 204  Y6 ~~ Y11 1.227  0.390   0.390    0.104    0.104
## 205  Y6 ~~ Y12 0.038  0.095   0.095    0.031    0.031
## 206  Y6 ~~ Y13 0.005  0.026   0.026    0.006    0.006
## 207  Y6 ~~ Y15 2.106  1.302   1.302    0.366    0.366
## 208  Y6 ~~ Y16 1.245 -0.520  -0.520   -0.106   -0.106
## 209  Y7 ~~  Y8 1.787  0.416   0.416    0.162    0.162
## 210  Y7 ~~  Y9 0.464 -0.149  -0.149   -0.113   -0.113
## 211  Y7 ~~ Y10 3.410  0.385   0.385    0.201    0.201
## 212  Y7 ~~ Y11 0.000  0.000   0.000    0.000    0.000
## 213  Y7 ~~ Y12 0.339 -0.160  -0.160   -0.096   -0.096
## 214  Y7 ~~ Y13 0.658 -0.189  -0.189   -0.076   -0.076
## 215  Y7 ~~ Y14 0.001 -0.019  -0.019   -0.003   -0.003
## 216  Y7 ~~ Y15 0.004  0.026   0.026    0.013    0.013
## 217  Y7 ~~ Y16 0.509  0.225   0.225    0.085    0.085
## 218  Y8 ~~  Y9 0.175  0.102   0.102    0.066    0.066
## 219  Y8 ~~ Y10 3.379 -0.429  -0.429   -0.192   -0.192
## 220  Y8 ~~ Y11 0.005  0.019   0.019    0.008    0.008
## 221  Y8 ~~ Y12 0.177  0.127   0.127    0.065    0.065
## 222  Y8 ~~ Y13 1.524  0.320   0.320    0.111    0.111
## 223  Y8 ~~ Y14 3.118 -1.049  -1.049   -0.158   -0.158
## 224  Y8 ~~ Y15 2.107 -0.528  -0.528   -0.235   -0.235
## 225  Y8 ~~ Y16 8.976  1.046   1.046    0.338    0.338
## 226  Y9 ~~ Y10 0.263  0.118   0.118    0.103    0.103
## 227  Y9 ~~ Y11 0.000 -0.002  -0.002   -0.002   -0.002
## 228  Y9 ~~ Y12 0.317 -0.127  -0.127   -0.127   -0.127
## 229  Y9 ~~ Y13 0.321  0.107   0.107    0.072    0.072
## 230  Y9 ~~ Y14 0.468  0.282   0.282    0.083    0.083
## 231  Y9 ~~ Y15 0.055  0.060   0.060    0.052    0.052
## 232  Y9 ~~ Y16 0.870  0.234   0.234    0.147    0.147
## 233 Y10 ~~ Y11 0.253 -0.113  -0.113   -0.064   -0.064
## 234 Y10 ~~ Y12 0.042  0.043   0.043    0.029    0.029
## 235 Y10 ~~ Y13 0.439 -0.119  -0.119   -0.055   -0.055
## 236 Y10 ~~ Y14 0.103 -0.122  -0.122   -0.025   -0.025
## 237 Y10 ~~ Y15 0.416  0.149   0.149    0.089    0.089
## 238 Y10 ~~ Y16 1.142 -0.257  -0.257   -0.111   -0.111
## 239 Y11 ~~ Y12 0.562  0.179   0.179    0.116    0.116
## 240 Y11 ~~ Y13 0.291 -0.109  -0.109   -0.048   -0.048
## 241 Y11 ~~ Y14 0.062  0.108   0.108    0.021    0.021
## 242 Y11 ~~ Y15 1.381 -0.315  -0.315   -0.177   -0.177
## 243 Y11 ~~ Y16 0.383 -0.167  -0.167   -0.068   -0.068
## 245 Y12 ~~ Y14 1.277 -0.670  -0.670   -0.155   -0.155
## 246 Y12 ~~ Y15 0.027  0.070   0.070    0.048    0.048
## 247 Y12 ~~ Y16 2.193  0.470   0.470    0.232    0.232
## 248 Y13 ~~ Y14 1.238  0.514   0.514    0.080    0.080
## 249 Y13 ~~ Y15 0.070 -0.087  -0.087   -0.040   -0.040
## 250 Y13 ~~ Y16 1.503 -0.331  -0.331   -0.110   -0.110
## 251 Y14 ~~ Y15 0.017  0.170   0.170    0.034    0.034
## 252 Y14 ~~ Y16 0.800 -0.511  -0.511   -0.074   -0.074
## 253 Y15 ~~ Y16 0.399  0.260   0.260    0.112    0.112
SEM.2step.measurement.model6.fit <- update(SEM.2step.initial.measurement.fit, model = c(SEM.2step.initial.measurement.model, 'Y6 ~~ Y14', 
'Y5 ~~ Y13', 'Y3 ~~ Y11', 'Y2 ~~ Y10', 'Y8 ~~ Y16'))
summary(SEM.2step.measurement.model6.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        52
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                93.596
##   Degrees of freedom                                84
##   P-value (Chi-square)                           0.222
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.988
##   Tucker-Lewis Index (TLI)                       0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2688.653
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5481.306
##   Bayesian (BIC)                              5607.708
##   Sample-size adjusted Bayesian (BIC)         5443.673
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.037
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.073
##   P-value RMSEA <= 0.05                          0.686
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.073
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.349    0.201   11.712    0.000    2.349    0.961
##     Y2                1.501    0.154    9.754    0.000    1.501    0.853
##     Y3                2.309    0.237    9.743    0.000    2.309    0.853
##   F2 =~                                                                 
##     Y4                1.751    0.328    5.338    0.000    1.751    0.863
##     Y5                0.868    0.244    3.553    0.000    0.868    0.411
##   F3 =~                                                                 
##     Y6                3.323    0.435    7.647    0.000    3.323    0.781
##     Y7                1.152    0.204    5.647    0.000    1.152    0.610
##     Y8                0.739    0.216    3.425    0.001    0.739    0.391
##   F4 =~                                                                 
##     Y9                1.000                               2.458    0.940
##     Y10               0.544    0.064    8.563    0.000    1.337    0.720
##     Y11               0.987    0.081   12.115    0.000    2.427    0.872
##   F5 =~                                                                 
##     Y12               1.000                               2.036    0.875
##     Y13               0.689    0.113    6.106    0.000    1.402    0.641
##   F6 =~                                                                 
##     Y14               1.000                               2.894    0.605
##     Y15               0.811    0.151    5.376    0.000    2.346    0.887
##     Y16               0.240    0.082    2.935    0.003    0.694    0.359
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.452    1.784    4.178    0.000    7.452    0.735
##  .Y5 ~~                                                                 
##    .Y13               2.213    0.461    4.801    0.000    2.213    0.685
##  .Y3 ~~                                                                 
##    .Y11               1.008    0.284    3.544    0.000    1.008    0.522
##  .Y2 ~~                                                                 
##    .Y10               0.524    0.157    3.332    0.001    0.524    0.442
##  .Y8 ~~                                                                 
##    .Y16               1.058    0.373    2.835    0.005    1.058    0.337
##   F1 ~~                                                                 
##     F2                0.405    0.122    3.312    0.001    0.405    0.405
##     F3                0.448    0.106    4.232    0.000    0.448    0.448
##     F4                1.853    0.249    7.441    0.000    0.754    0.754
##     F5                0.831    0.246    3.377    0.001    0.408    0.408
##     F6                1.178    0.394    2.989    0.003    0.407    0.407
##   F2 ~~                                                                 
##     F3                0.376    0.136    2.768    0.006    0.376    0.376
##     F4                0.815    0.328    2.487    0.013    0.332    0.332
##     F5                1.201    0.304    3.953    0.000    0.590    0.590
##     F6                0.734    0.423    1.736    0.083    0.254    0.254
##   F3 ~~                                                                 
##     F4                1.430    0.292    4.904    0.000    0.582    0.582
##     F5                1.210    0.262    4.616    0.000    0.594    0.594
##     F6                2.564    0.527    4.865    0.000    0.886    0.886
##   F4 ~~                                                                 
##     F5                2.663    0.704    3.782    0.000    0.532    0.532
##     F6                4.209    1.214    3.467    0.001    0.592    0.592
##   F5 ~~                                                                 
##     F6                4.284    1.155    3.708    0.000    0.727    0.727
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.462    0.216    2.135    0.033    0.462    0.077
##    .Y2                0.847    0.160    5.308    0.000    0.847    0.273
##    .Y3                2.001    0.377    5.311    0.000    2.001    0.273
##    .Y4                1.047    0.984    1.064    0.287    1.047    0.255
##    .Y5                3.708    0.626    5.922    0.000    3.708    0.831
##    .Y6                7.063    1.827    3.867    0.000    7.063    0.390
##    .Y7                2.241    0.396    5.661    0.000    2.241    0.628
##    .Y8                3.036    0.486    6.243    0.000    3.036    0.847
##    .Y9                0.791    0.298    2.649    0.008    0.791    0.116
##    .Y10               1.662    0.279    5.961    0.000    1.662    0.482
##    .Y11               1.861    0.404    4.604    0.000    1.861    0.240
##    .Y12               1.265    0.524    2.413    0.016    1.265    0.234
##    .Y13               2.814    0.506    5.563    0.000    2.814    0.589
##    .Y14              14.538    2.510    5.793    0.000   14.538    0.634
##    .Y15               1.488    0.697    2.136    0.033    1.488    0.213
##    .Y16               3.252    0.514    6.329    0.000    3.252    0.871
##     F4                6.044    1.082    5.584    0.000    1.000    1.000
##     F5                4.146    0.946    4.381    0.000    1.000    1.000
##     F6                8.375    2.938    2.851    0.004    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.923
##     Y2                0.727
##     Y3                0.727
##     Y4                0.745
##     Y5                0.169
##     Y6                0.610
##     Y7                0.372
##     Y8                0.153
##     Y9                0.884
##     Y10               0.518
##     Y11               0.760
##     Y12               0.766
##     Y13               0.411
##     Y14               0.366
##     Y15               0.787
##     Y16               0.129
## 
## Modification Indices:
## 
##     lhs op rhs    mi    epc sepc.lv sepc.all sepc.nox
## 59   F1 =~  Y4 0.069 -0.134  -0.134   -0.066   -0.066
## 60   F1 =~  Y5 0.069  0.067   0.067    0.032    0.032
## 61   F1 =~  Y6 0.475 -0.386  -0.386   -0.091   -0.091
## 62   F1 =~  Y7 0.020 -0.031  -0.031   -0.016   -0.016
## 63   F1 =~  Y8 2.063  0.315   0.315    0.166    0.166
## 64   F1 =~  Y9 0.014 -0.036  -0.036   -0.014   -0.014
## 65   F1 =~ Y10 0.266 -0.123  -0.123   -0.066   -0.066
## 66   F1 =~ Y11 0.252  0.160   0.160    0.057    0.057
## 67   F1 =~ Y12 0.094  0.092   0.092    0.040    0.040
## 68   F1 =~ Y13 0.094 -0.064  -0.064   -0.029   -0.029
## 69   F1 =~ Y14 2.470  0.760   0.760    0.159    0.159
## 70   F1 =~ Y15 0.837 -0.341  -0.341   -0.129   -0.129
## 71   F1 =~ Y16 1.307 -0.249  -0.249   -0.129   -0.129
## 72   F2 =~  Y1 0.034  0.030   0.030    0.012    0.012
## 73   F2 =~  Y2 0.727  0.109   0.109    0.062    0.062
## 74   F2 =~  Y3 1.135 -0.206  -0.206   -0.076   -0.076
## 75   F2 =~  Y6 1.869 -0.794  -0.794   -0.187   -0.187
## 76   F2 =~  Y7 2.234  0.338   0.338    0.179    0.179
## 77   F2 =~  Y8 0.005  0.016   0.016    0.008    0.008
## 78   F2 =~  Y9 0.110  0.064   0.064    0.024    0.024
## 79   F2 =~ Y10 0.003  0.010   0.010    0.005    0.005
## 80   F2 =~ Y11 0.146 -0.075  -0.075   -0.027   -0.027
## 81   F2 =~ Y12 0.019 -0.059  -0.059   -0.025   -0.025
## 82   F2 =~ Y13 0.019  0.041   0.041    0.019    0.019
## 83   F2 =~ Y14 1.598  0.629   0.629    0.132    0.132
## 84   F2 =~ Y15 1.974 -0.539  -0.539   -0.204   -0.204
## 85   F2 =~ Y16 0.165  0.092   0.092    0.047    0.047
## 86   F3 =~  Y1 1.298 -0.191  -0.191   -0.078   -0.078
## 87   F3 =~  Y2 0.047  0.028   0.028    0.016    0.016
## 88   F3 =~  Y3 1.322  0.226   0.226    0.084    0.084
## 89   F3 =~  Y4 5.331 -1.224  -1.224   -0.604   -0.604
## 90   F3 =~  Y5 5.330  0.607   0.607    0.288    0.288
## 91   F3 =~  Y9 1.008 -0.239  -0.239   -0.092   -0.092
## 92   F3 =~ Y10 1.152  0.210   0.210    0.113    0.113
## 93   F3 =~ Y11 0.090  0.072   0.072    0.026    0.026
## 94   F3 =~ Y12 0.003 -0.025  -0.025   -0.011   -0.011
## 95   F3 =~ Y13 0.003  0.017   0.017    0.008    0.008
## 96   F3 =~ Y14 0.208  0.762   0.762    0.159    0.159
## 97   F3 =~ Y15 0.009 -0.112  -0.112   -0.042   -0.042
## 98   F3 =~ Y16 0.260 -0.301  -0.301   -0.156   -0.156
## 99   F4 =~  Y1 2.702 -0.163  -0.401   -0.164   -0.164
## 100  F4 =~  Y2 0.759  0.065   0.159    0.090    0.090
## 101  F4 =~  Y3 1.191  0.129   0.317    0.117    0.117
## 102  F4 =~  Y4 0.300 -0.106  -0.260   -0.128   -0.128
## 103  F4 =~  Y5 0.300  0.052   0.129    0.061    0.061
## 104  F4 =~  Y6 0.182 -0.117  -0.287   -0.067   -0.067
## 105  F4 =~  Y7 0.002  0.005   0.012    0.006    0.006
## 106  F4 =~  Y8 0.432  0.068   0.167    0.088    0.088
## 107  F4 =~ Y12 0.284  0.076   0.186    0.080    0.080
## 108  F4 =~ Y13 0.284 -0.052  -0.128   -0.059   -0.059
## 109  F4 =~ Y14 4.542  0.525   1.291    0.270    0.270
## 110  F4 =~ Y15 2.573 -0.309  -0.760   -0.288   -0.288
## 111  F4 =~ Y16 0.704 -0.089  -0.218   -0.113   -0.113
## 112  F5 =~  Y1 3.068 -0.137  -0.279   -0.114   -0.114
## 113  F5 =~  Y2 1.705  0.079   0.161    0.091    0.091
## 114  F5 =~  Y3 0.649  0.074   0.151    0.056    0.056
## 115  F5 =~  Y4 2.380 -0.558  -1.137   -0.561   -0.561
## 116  F5 =~  Y5 2.380  0.277   0.564    0.267    0.267
## 117  F5 =~  Y6 0.022 -0.057  -0.117   -0.027   -0.027
## 118  F5 =~  Y7 0.013 -0.017  -0.034   -0.018   -0.018
## 119  F5 =~  Y8 0.170  0.058   0.117    0.062    0.062
## 120  F5 =~  Y9 0.063  0.027   0.055    0.021    0.021
## 121  F5 =~ Y10 0.031  0.016   0.032    0.017    0.017
## 122  F5 =~ Y11 0.141 -0.041  -0.083   -0.030   -0.030
## 123  F5 =~ Y14 1.316  0.473   0.964    0.201    0.201
## 124  F5 =~ Y15 2.002 -0.458  -0.933   -0.353   -0.353
## 125  F5 =~ Y16 0.288  0.091   0.185    0.096    0.096
## 126  F6 =~  Y1 3.278 -0.099  -0.286   -0.117   -0.117
## 127  F6 =~  Y2 0.168  0.017   0.050    0.028    0.028
## 128  F6 =~  Y3 3.137  0.114   0.331    0.122    0.122
## 129  F6 =~  Y4 5.720 -0.420  -1.214   -0.599   -0.599
## 130  F6 =~  Y5 5.719  0.208   0.602    0.285    0.285
## 131  F6 =~  Y6 2.590  1.079   3.123    0.734    0.734
## 132  F6 =~  Y7 1.579 -0.292  -0.845   -0.447   -0.447
## 133  F6 =~  Y8 0.229 -0.097  -0.280   -0.148   -0.148
## 134  F6 =~  Y9 0.216 -0.037  -0.108   -0.041   -0.041
## 135  F6 =~ Y10 0.698  0.055   0.160    0.086    0.086
## 136  F6 =~ Y11 0.008 -0.007  -0.021   -0.008   -0.008
## 137  F6 =~ Y12 0.000 -0.001  -0.002   -0.001   -0.001
## 138  F6 =~ Y13 0.000  0.001   0.002    0.001    0.001
## 139  Y1 ~~  Y2 0.143  0.092   0.092    0.147    0.147
## 140  Y1 ~~  Y3 0.916  0.346   0.346    0.360    0.360
## 141  Y1 ~~  Y4 0.061 -0.051  -0.051   -0.073   -0.073
## 142  Y1 ~~  Y5 3.330  0.327   0.327    0.250    0.250
## 143  Y1 ~~  Y6 0.621  0.221   0.221    0.123    0.123
## 144  Y1 ~~  Y7 0.140 -0.070  -0.070   -0.068   -0.068
## 145  Y1 ~~  Y8 0.006 -0.015  -0.015   -0.013   -0.013
## 146  Y1 ~~  Y9 4.319  0.433   0.433    0.716    0.716
## 147  Y1 ~~ Y10 3.139 -0.317  -0.317   -0.362   -0.362
## 148  Y1 ~~ Y11 2.744 -0.357  -0.357   -0.385   -0.385
## 149  Y1 ~~ Y12 0.215  0.088   0.088    0.115    0.115
## 150  Y1 ~~ Y13 3.435 -0.298  -0.298   -0.261   -0.261
## 151  Y1 ~~ Y14 1.115 -0.366  -0.366   -0.141   -0.141
## 152  Y1 ~~ Y15 0.017  0.027   0.027    0.033    0.033
## 153  Y1 ~~ Y16 0.603 -0.156  -0.156   -0.127   -0.127
## 154  Y2 ~~  Y3 1.313 -0.230  -0.230   -0.176   -0.176
## 155  Y2 ~~  Y4 1.013  0.165   0.165    0.176    0.176
## 156  Y2 ~~  Y5 3.268 -0.266  -0.266   -0.150   -0.150
## 157  Y2 ~~  Y6 0.101 -0.071  -0.071   -0.029   -0.029
## 158  Y2 ~~  Y7 0.264 -0.080  -0.080   -0.058   -0.058
## 159  Y2 ~~  Y8 3.085  0.286   0.286    0.178    0.178
## 160  Y2 ~~  Y9 2.466 -0.222  -0.222   -0.271   -0.271
## 161  Y2 ~~ Y11 4.743  0.316   0.316    0.252    0.252
## 162  Y2 ~~ Y12 1.002  0.154   0.154    0.149    0.149
## 163  Y2 ~~ Y13 0.163  0.054   0.054    0.035    0.035
## 164  Y2 ~~ Y14 1.063  0.291   0.291    0.083    0.083
## 165  Y2 ~~ Y15 2.211 -0.252  -0.252   -0.225   -0.225
## 166  Y2 ~~ Y16 0.010 -0.017  -0.017   -0.010   -0.010
## 167  Y3 ~~  Y4 0.449 -0.167  -0.167   -0.115   -0.115
## 168  Y3 ~~  Y5 0.317 -0.125  -0.125   -0.046   -0.046
## 169  Y3 ~~  Y6 0.557 -0.254  -0.254   -0.068   -0.068
## 170  Y3 ~~  Y7 0.145  0.088   0.088    0.042    0.042
## 171  Y3 ~~  Y8 0.130 -0.088  -0.088   -0.036   -0.036
## 172  Y3 ~~  Y9 0.884 -0.247  -0.247   -0.196   -0.196
## 173  Y3 ~~ Y10 2.286  0.296   0.296    0.162    0.162
## 174  Y3 ~~ Y12 2.475 -0.366  -0.366   -0.230   -0.230
## 175  Y3 ~~ Y13 3.842  0.391   0.391    0.165    0.165
## 176  Y3 ~~ Y14 0.172  0.177   0.177    0.033    0.033
## 177  Y3 ~~ Y15 2.208  0.382   0.382    0.221    0.221
## 178  Y3 ~~ Y16 0.061  0.062   0.062    0.024    0.024
## 180  Y4 ~~  Y6 0.491 -0.436  -0.436   -0.160   -0.160
## 181  Y4 ~~  Y7 0.958  0.291   0.291    0.190    0.190
## 182  Y4 ~~  Y8 0.174 -0.127  -0.127   -0.071   -0.071
## 183  Y4 ~~  Y9 1.415  0.291   0.291    0.320    0.320
## 184  Y4 ~~ Y10 0.577 -0.168  -0.168   -0.127   -0.127
## 185  Y4 ~~ Y11 0.304 -0.141  -0.141   -0.101   -0.101
## 186  Y4 ~~ Y12 0.155  0.227   0.227    0.198    0.198
## 187  Y4 ~~ Y13 0.055  0.093   0.093    0.054    0.054
## 188  Y4 ~~ Y14 0.853  0.592   0.592    0.152    0.152
## 189  Y4 ~~ Y15 4.125 -0.921  -0.921   -0.738   -0.738
## 190  Y4 ~~ Y16 0.041 -0.064  -0.064   -0.034   -0.034
## 191  Y5 ~~  Y6 0.078 -0.115  -0.115   -0.023   -0.023
## 192  Y5 ~~  Y7 4.188  0.532   0.532    0.184    0.184
## 193  Y5 ~~  Y8 3.238 -0.490  -0.490   -0.146   -0.146
## 194  Y5 ~~  Y9 0.673 -0.171  -0.171   -0.100   -0.100
## 195  Y5 ~~ Y10 2.716  0.327   0.327    0.132    0.132
## 196  Y5 ~~ Y11 0.276 -0.118  -0.118   -0.045   -0.045
## 197  Y5 ~~ Y12 1.198 -0.544  -0.544   -0.251   -0.251
## 198  Y5 ~~ Y14 0.131 -0.184  -0.184   -0.025   -0.025
## 199  Y5 ~~ Y15 2.295  0.492   0.492    0.209    0.209
## 200  Y5 ~~ Y16 3.793  0.548   0.548    0.158    0.158
## 201  Y6 ~~  Y7 1.512 -0.989  -0.989   -0.248   -0.248
## 202  Y6 ~~  Y8 0.216  0.234   0.234    0.050    0.050
## 203  Y6 ~~  Y9 1.659 -0.434  -0.434   -0.183   -0.183
## 204  Y6 ~~ Y10 0.098  0.095   0.095    0.028    0.028
## 205  Y6 ~~ Y11 1.163  0.379   0.379    0.104    0.104
## 206  Y6 ~~ Y12 0.038  0.094   0.094    0.032    0.032
## 207  Y6 ~~ Y13 0.001 -0.014  -0.014   -0.003   -0.003
## 208  Y6 ~~ Y15 2.178  1.343   1.343    0.414    0.414
## 209  Y6 ~~ Y16 0.685 -0.371  -0.371   -0.077   -0.077
## 210  Y7 ~~  Y8 1.523  0.362   0.362    0.139    0.139
## 211  Y7 ~~  Y9 0.359 -0.131  -0.131   -0.099   -0.099
## 212  Y7 ~~ Y10 3.229  0.376   0.376    0.195    0.195
## 213  Y7 ~~ Y11 0.000 -0.003  -0.003   -0.001   -0.001
## 214  Y7 ~~ Y12 0.255 -0.139  -0.139   -0.082   -0.082
## 215  Y7 ~~ Y13 0.654 -0.190  -0.190   -0.076   -0.076
## 216  Y7 ~~ Y14 0.008  0.058   0.058    0.010    0.010
## 217  Y7 ~~ Y15 0.030  0.067   0.067    0.037    0.037
## 218  Y7 ~~ Y16 0.249  0.148   0.148    0.055    0.055
## 219  Y8 ~~  Y9 0.027  0.037   0.037    0.024    0.024
## 220  Y8 ~~ Y10 2.384 -0.340  -0.340   -0.151   -0.151
## 221  Y8 ~~ Y11 0.091  0.075   0.075    0.031    0.031
## 222  Y8 ~~ Y12 0.002  0.013   0.013    0.007    0.007
## 223  Y8 ~~ Y13 3.092  0.432   0.432    0.148    0.148
## 224  Y8 ~~ Y14 1.665 -0.735  -0.735   -0.111   -0.111
## 225  Y8 ~~ Y15 1.638 -0.437  -0.437   -0.205   -0.205
## 226  Y9 ~~ Y10 0.256  0.117   0.117    0.102    0.102
## 227  Y9 ~~ Y11 0.001  0.013   0.013    0.010    0.010
## 228  Y9 ~~ Y12 0.318 -0.128  -0.128   -0.128   -0.128
## 229  Y9 ~~ Y13 0.340  0.111   0.111    0.074    0.074
## 230  Y9 ~~ Y14 0.459  0.280   0.280    0.083    0.083
## 231  Y9 ~~ Y15 0.067  0.066   0.066    0.061    0.061
## 232  Y9 ~~ Y16 0.741  0.204   0.204    0.127    0.127
## 233 Y10 ~~ Y11 0.270 -0.117  -0.117   -0.066   -0.066
## 234 Y10 ~~ Y12 0.033  0.038   0.038    0.026    0.026
## 235 Y10 ~~ Y13 0.460 -0.122  -0.122   -0.056   -0.056
## 236 Y10 ~~ Y14 0.104 -0.123  -0.123   -0.025   -0.025
## 237 Y10 ~~ Y15 0.305  0.127   0.127    0.081    0.081
## 238 Y10 ~~ Y16 0.230 -0.109  -0.109   -0.047   -0.047
## 239 Y11 ~~ Y12 0.565  0.179   0.179    0.117    0.117
## 240 Y11 ~~ Y13 0.287 -0.109  -0.109   -0.048   -0.048
## 241 Y11 ~~ Y14 0.092  0.132   0.132    0.025    0.025
## 242 Y11 ~~ Y15 1.567 -0.334  -0.334   -0.201   -0.201
## 243 Y11 ~~ Y16 0.406 -0.163  -0.163   -0.066   -0.066
## 245 Y12 ~~ Y14 1.187 -0.643  -0.643   -0.150   -0.150
## 246 Y12 ~~ Y15 0.049  0.096   0.096    0.070    0.070
## 247 Y12 ~~ Y16 2.084  0.431   0.431    0.212    0.212
## 248 Y13 ~~ Y14 1.500  0.562   0.562    0.088    0.088
## 249 Y13 ~~ Y15 0.074 -0.089  -0.089   -0.043   -0.043
## 250 Y13 ~~ Y16 2.890 -0.433  -0.433   -0.143   -0.143
## 251 Y14 ~~ Y15 0.493 -0.922  -0.922   -0.198   -0.198
## 252 Y14 ~~ Y16 0.396 -0.344  -0.344   -0.050   -0.050
## 253 Y15 ~~ Y16 2.004  0.549   0.549    0.249    0.249
SEM.2step.final.measurement.model <- '
F1 =~ NA*Y1 + Y2 +Y3
F2 =~ NA*Y4 + Y5
F3 =~ NA*Y6 + Y7 + Y8
F4 =~ Y9 + Y10 + Y11
F5 =~ Y12 + Y13
F6 =~ Y14 + Y15 + Y16
F1 ~~ 1*F1
F2 ~~ 1*F2
F3 ~~ 1*F3
Y6 ~~ Y14 
Y5 ~~ Y13
Y3 ~~ Y11
Y2 ~~ Y10
Y8 ~~ Y16'
SEM.2step.final.measurement.model.fit <- cfa(SEM.2step.final.measurement.model, sample.cov = SEM.2step.cov, sample.nobs = 84)
summary(SEM.2step.final.measurement.model.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 116 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        52
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                93.596
##   Degrees of freedom                                84
##   P-value (Chi-square)                           0.222
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.988
##   Tucker-Lewis Index (TLI)                       0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2688.653
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5481.306
##   Bayesian (BIC)                              5607.708
##   Sample-size adjusted Bayesian (BIC)         5443.673
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.037
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.073
##   P-value RMSEA <= 0.05                          0.686
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.073
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.349    0.201   11.712    0.000    2.349    0.961
##     Y2                1.501    0.154    9.754    0.000    1.501    0.853
##     Y3                2.309    0.237    9.743    0.000    2.309    0.853
##   F2 =~                                                                 
##     Y4                1.751    0.328    5.338    0.000    1.751    0.863
##     Y5                0.868    0.244    3.553    0.000    0.868    0.411
##   F3 =~                                                                 
##     Y6                3.323    0.435    7.647    0.000    3.323    0.781
##     Y7                1.152    0.204    5.647    0.000    1.152    0.610
##     Y8                0.739    0.216    3.425    0.001    0.739    0.391
##   F4 =~                                                                 
##     Y9                1.000                               2.458    0.940
##     Y10               0.544    0.064    8.563    0.000    1.337    0.720
##     Y11               0.987    0.081   12.115    0.000    2.427    0.872
##   F5 =~                                                                 
##     Y12               1.000                               2.036    0.875
##     Y13               0.689    0.113    6.106    0.000    1.402    0.641
##   F6 =~                                                                 
##     Y14               1.000                               2.894    0.605
##     Y15               0.811    0.151    5.376    0.000    2.346    0.887
##     Y16               0.240    0.082    2.935    0.003    0.694    0.359
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               7.452    1.784    4.178    0.000    7.452    0.735
##  .Y5 ~~                                                                 
##    .Y13               2.213    0.461    4.801    0.000    2.213    0.685
##  .Y3 ~~                                                                 
##    .Y11               1.008    0.284    3.544    0.000    1.008    0.522
##  .Y2 ~~                                                                 
##    .Y10               0.524    0.157    3.332    0.001    0.524    0.442
##  .Y8 ~~                                                                 
##    .Y16               1.058    0.373    2.835    0.005    1.058    0.337
##   F1 ~~                                                                 
##     F2                0.405    0.122    3.312    0.001    0.405    0.405
##     F3                0.448    0.106    4.232    0.000    0.448    0.448
##     F4                1.853    0.249    7.441    0.000    0.754    0.754
##     F5                0.831    0.246    3.377    0.001    0.408    0.408
##     F6                1.178    0.394    2.989    0.003    0.407    0.407
##   F2 ~~                                                                 
##     F3                0.376    0.136    2.768    0.006    0.376    0.376
##     F4                0.815    0.328    2.487    0.013    0.332    0.332
##     F5                1.201    0.304    3.953    0.000    0.590    0.590
##     F6                0.734    0.423    1.736    0.083    0.254    0.254
##   F3 ~~                                                                 
##     F4                1.430    0.292    4.904    0.000    0.582    0.582
##     F5                1.210    0.262    4.616    0.000    0.594    0.594
##     F6                2.564    0.527    4.865    0.000    0.886    0.886
##   F4 ~~                                                                 
##     F5                2.663    0.704    3.782    0.000    0.532    0.532
##     F6                4.209    1.214    3.467    0.001    0.592    0.592
##   F5 ~~                                                                 
##     F6                4.284    1.155    3.708    0.000    0.727    0.727
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.462    0.216    2.135    0.033    0.462    0.077
##    .Y2                0.847    0.160    5.308    0.000    0.847    0.273
##    .Y3                2.001    0.377    5.311    0.000    2.001    0.273
##    .Y4                1.047    0.984    1.064    0.287    1.047    0.255
##    .Y5                3.708    0.626    5.922    0.000    3.708    0.831
##    .Y6                7.063    1.827    3.867    0.000    7.063    0.390
##    .Y7                2.241    0.396    5.661    0.000    2.241    0.628
##    .Y8                3.036    0.486    6.243    0.000    3.036    0.847
##    .Y9                0.791    0.298    2.649    0.008    0.791    0.116
##    .Y10               1.662    0.279    5.961    0.000    1.662    0.482
##    .Y11               1.861    0.404    4.604    0.000    1.861    0.240
##    .Y12               1.265    0.524    2.413    0.016    1.265    0.234
##    .Y13               2.814    0.506    5.563    0.000    2.814    0.589
##    .Y14              14.538    2.510    5.793    0.000   14.538    0.634
##    .Y15               1.488    0.697    2.136    0.033    1.488    0.213
##    .Y16               3.252    0.514    6.329    0.000    3.252    0.871
##     F4                6.044    1.082    5.584    0.000    1.000    1.000
##     F5                4.146    0.946    4.381    0.000    1.000    1.000
##     F6                8.375    2.938    2.851    0.004    1.000    1.000
## 
## R-Square:
##                    Estimate
##     Y1                0.923
##     Y2                0.727
##     Y3                0.727
##     Y4                0.745
##     Y5                0.169
##     Y6                0.610
##     Y7                0.372
##     Y8                0.153
##     Y9                0.884
##     Y10               0.518
##     Y11               0.760
##     Y12               0.766
##     Y13               0.411
##     Y14               0.366
##     Y15               0.787
##     Y16               0.129

5.1.2.2 structural phase

SEM.2step.initial.structural.model <- '
# measurement component 
F1 =~ NA*Y1 + Y2 +Y3
F2 =~ NA*Y4 + Y5
F3 =~ NA*Y6 + Y7 + Y8
F4 =~ Y9 + Y10 + Y11
F5 =~ Y12 + Y13
F6 =~ Y14 + Y15 + Y16
F1 ~~ 1*F1
F2 ~~ 1*F2
F3 ~~ 1*F3
Y6 ~~ Y14 
Y5 ~~ Y13
Y3 ~~ Y11
Y2 ~~ Y10
Y8 ~~ Y16
# structural component
F4 ~ a*F1
F5 ~ b*F1 + c*F2 + d*F4
F6 ~ e*F2 + f*F3 + g*F5
#indirect effects
ad :=a*d
adg :=a*d*g
bg :=b*g
dg :=d*g'
SEM.2step.initial.structural.model.fit <- sem(SEM.2step.initial.structural.model, sample.cov = SEM.2step.cov, sample.nobs = 84) 
summary(SEM.2step.initial.structural.model.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE, modindices = TRUE)
## lavaan 0.6-8 ended normally after 95 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        47
##                                                       
##   Number of observations                            84
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               106.383
##   Degrees of freedom                                89
##   P-value (Chi-square)                           0.101
## 
## Model Test Baseline Model:
## 
##   Test statistic                               904.019
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.978
##   Tucker-Lewis Index (TLI)                       0.970
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2695.046
##   Loglikelihood unrestricted model (H1)      -2641.855
##                                                       
##   Akaike (AIC)                                5484.092
##   Bayesian (BIC)                              5598.341
##   Sample-size adjusted Bayesian (BIC)         5450.078
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.048
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.080
##   P-value RMSEA <= 0.05                          0.514
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.097
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     Y1                2.340    0.201   11.644    0.000    2.340    0.957
##     Y2                1.501    0.154    9.765    0.000    1.501    0.853
##     Y3                2.310    0.236    9.775    0.000    2.310    0.855
##   F2 =~                                                                 
##     Y4                1.463    0.257    5.683    0.000    1.463    0.722
##     Y5                0.956    0.239    4.003    0.000    0.956    0.452
##   F3 =~                                                                 
##     Y6                3.077    0.428    7.192    0.000    3.077    0.733
##     Y7                1.186    0.205    5.782    0.000    1.186    0.628
##     Y8                0.738    0.216    3.413    0.001    0.738    0.390
##   F4 =~                                                                 
##     Y9                1.000                               2.475    0.947
##     Y10               0.540    0.063    8.520    0.000    1.336    0.717
##     Y11               0.979    0.082   11.967    0.000    2.424    0.868
##   F5 =~                                                                 
##     Y12               1.000                               2.051    0.890
##     Y13               0.712    0.120    5.937    0.000    1.460    0.653
##   F6 =~                                                                 
##     Y14               1.000                               2.387    0.520
##     Y15               0.964    0.219    4.402    0.000    2.301    0.911
##     Y16               0.278    0.101    2.757    0.006    0.665    0.347
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F4 ~                                                                  
##     F1         (a)    1.877    0.249    7.547    0.000    0.758    0.758
##   F5 ~                                                                  
##     F1         (b)   -0.439    0.342   -1.283    0.200   -0.214   -0.214
##     F2         (c)    1.316    0.316    4.161    0.000    0.642    0.642
##     F4         (d)    0.372    0.128    2.899    0.004    0.449    0.449
##   F6 ~                                                                  
##     F2         (e)   -1.248    0.559   -2.231    0.026   -0.523   -0.523
##     F3         (f)    2.007    0.549    3.652    0.000    0.840    0.840
##     F5         (g)    0.759    0.241    3.155    0.002    0.652    0.652
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Y6 ~~                                                                 
##    .Y14               8.401    1.868    4.497    0.000    8.401    0.751
##  .Y5 ~~                                                                 
##    .Y13               2.162    0.466    4.640    0.000    2.162    0.676
##  .Y3 ~~                                                                 
##    .Y11               1.015    0.286    3.552    0.000    1.015    0.521
##  .Y2 ~~                                                                 
##    .Y10               0.518    0.158    3.286    0.001    0.518    0.436
##  .Y8 ~~                                                                 
##    .Y16               1.057    0.372    2.839    0.005    1.057    0.338
##   F1 ~~                                                                 
##     F2                0.458    0.120    3.821    0.000    0.458    0.458
##     F3                0.462    0.103    4.464    0.000    0.462    0.462
##   F2 ~~                                                                 
##     F3                0.544    0.128    4.254    0.000    0.544    0.544
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                1.000                               1.000    1.000
##     F2                1.000                               1.000    1.000
##     F3                1.000                               1.000    1.000
##    .Y1                0.503    0.214    2.352    0.019    0.503    0.084
##    .Y2                0.840    0.158    5.305    0.000    0.840    0.272
##    .Y3                1.969    0.372    5.291    0.000    1.969    0.269
##    .Y4                1.971    0.592    3.331    0.001    1.971    0.479
##    .Y5                3.564    0.610    5.842    0.000    3.564    0.796
##    .Y6                8.149    1.868    4.363    0.000    8.149    0.463
##    .Y7                2.160    0.395    5.464    0.000    2.160    0.605
##    .Y8                3.032    0.487    6.221    0.000    3.032    0.848
##    .Y9                0.710    0.306    2.316    0.021    0.710    0.104
##    .Y10               1.684    0.282    5.973    0.000    1.684    0.485
##    .Y11               1.929    0.417    4.624    0.000    1.929    0.247
##    .Y12               1.108    0.534    2.075    0.038    1.108    0.209
##    .Y13               2.865    0.527    5.433    0.000    2.865    0.574
##    .Y14              15.364    2.571    5.976    0.000   15.364    0.729
##    .Y15               1.090    0.833    1.309    0.191    1.090    0.171
##    .Y16               3.235    0.511    6.332    0.000    3.235    0.880
##    .F4                2.603    0.534    4.872    0.000    0.425    0.425
##    .F5                1.733    0.600    2.888    0.004    0.412    0.412
##    .F6                0.588    0.725    0.812    0.417    0.103    0.103
## 
## R-Square:
##                    Estimate
##     Y1                0.916
##     Y2                0.728
##     Y3                0.731
##     Y4                0.521
##     Y5                0.204
##     Y6                0.537
##     Y7                0.395
##     Y8                0.152
##     Y9                0.896
##     Y10               0.515
##     Y11               0.753
##     Y12               0.791
##     Y13               0.426
##     Y14               0.271
##     Y15               0.829
##     Y16               0.120
##     F4                0.575
##     F5                0.588
##     F6                0.897
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     ad                0.699    0.256    2.726    0.006    0.341    0.341
##     adg               0.531    0.231    2.295    0.022    0.222    0.222
##     bg               -0.333    0.282   -1.182    0.237   -0.140   -0.140
##     dg                0.283    0.118    2.396    0.017    0.293    0.293
## 
## Modification Indices:
## 
##     lhs op rhs    mi    epc sepc.lv sepc.all sepc.nox
## 58   F1 =~  Y4 0.188  0.143   0.143    0.070    0.070
## 59   F1 =~  Y5 0.115 -0.076  -0.076   -0.036   -0.036
## 60   F1 =~  Y6 0.270 -0.199  -0.199   -0.047   -0.047
## 61   F1 =~  Y7 0.067 -0.056  -0.056   -0.030   -0.030
## 62   F1 =~  Y8 2.057  0.316   0.316    0.167    0.167
## 63   F1 =~  Y9 0.114 -0.108  -0.108   -0.041   -0.041
## 64   F1 =~ Y10 0.165 -0.099  -0.099   -0.053   -0.053
## 65   F1 =~ Y11 0.435  0.218   0.218    0.078    0.078
## 66   F1 =~ Y12 0.001 -0.009  -0.009   -0.004   -0.004
## 67   F1 =~ Y13 0.003 -0.010  -0.010   -0.005   -0.005
## 68   F1 =~ Y14 3.206  0.744   0.744    0.162    0.162
## 69   F1 =~ Y15 0.621 -0.236  -0.236   -0.093   -0.093
## 70   F1 =~ Y16 1.180 -0.238  -0.238   -0.124   -0.124
## 71   F2 =~  Y1 0.016 -0.023  -0.023   -0.009   -0.009
## 72   F2 =~  Y2 0.452  0.094   0.094    0.054    0.054
## 73   F2 =~  Y3 1.088 -0.219  -0.219   -0.081   -0.081
## 74   F2 =~  Y6 1.779 -0.868  -0.868   -0.207   -0.207
## 75   F2 =~  Y7 1.560  0.347   0.347    0.184    0.184
## 76   F2 =~  Y8 0.135  0.103   0.103    0.054    0.054
## 77   F2 =~  Y9 0.015  0.024   0.024    0.009    0.009
## 78   F2 =~ Y10 0.308  0.098   0.098    0.053    0.053
## 79   F2 =~ Y11 0.032  0.037   0.037    0.013    0.013
## 80   F2 =~ Y12 0.001 -0.020  -0.020   -0.009   -0.009
## 81   F2 =~ Y13 0.001  0.014   0.014    0.006    0.006
## 82   F2 =~ Y14 3.077  1.060   1.060    0.231    0.231
## 83   F2 =~ Y15 4.197 -1.144  -1.144   -0.453   -0.453
## 84   F2 =~ Y16 0.367  0.162   0.162    0.084    0.084
## 85   F3 =~  Y1 1.700 -0.214  -0.214   -0.087   -0.087
## 86   F3 =~  Y2 0.251 -0.065  -0.065   -0.037   -0.037
## 87   F3 =~  Y3 0.183  0.082   0.082    0.030    0.030
## 88   F3 =~  Y4 6.590 -1.017  -1.017   -0.502   -0.502
## 89   F3 =~  Y5 1.057  0.261   0.261    0.123    0.123
## 90   F3 =~  Y9 0.008  0.015   0.015    0.006    0.006
## 91   F3 =~ Y10 1.908  0.225   0.225    0.121    0.121
## 92   F3 =~ Y11 0.782  0.166   0.166    0.060    0.060
## 93   F3 =~ Y12 0.219  0.149   0.149    0.065    0.065
## 94   F3 =~ Y13 0.776  0.198   0.198    0.088    0.088
## 95   F3 =~ Y14 1.232  1.164   1.164    0.254    0.254
## 96   F3 =~ Y15 0.684 -0.724  -0.724   -0.286   -0.286
## 97   F3 =~ Y16 0.055 -0.103  -0.103   -0.054   -0.054
## 98   F4 =~  Y1 3.615 -0.186  -0.461   -0.189   -0.189
## 99   F4 =~  Y2 0.457  0.050   0.124    0.071    0.071
## 100  F4 =~  Y3 0.678  0.097   0.240    0.089    0.089
## 101  F4 =~  Y4 0.006 -0.008  -0.019   -0.010   -0.010
## 102  F4 =~  Y5 0.014 -0.010  -0.025   -0.012   -0.012
## 103  F4 =~  Y6 0.813  0.124   0.307    0.073    0.073
## 104  F4 =~  Y7 0.188  0.035   0.087    0.046    0.046
## 105  F4 =~  Y8 0.659  0.068   0.168    0.089    0.089
## 106  F4 =~ Y12 0.000  0.002   0.005    0.002    0.002
## 107  F4 =~ Y13 0.095 -0.027  -0.066   -0.030   -0.030
## 108  F4 =~ Y14 1.920  0.236   0.583    0.127    0.127
## 109  F4 =~ Y15 0.122 -0.040  -0.099   -0.039   -0.039
## 110  F4 =~ Y16 0.453 -0.061  -0.151   -0.079   -0.079
## 111  F5 =~  Y1 3.466 -0.144  -0.295   -0.121   -0.121
## 112  F5 =~  Y2 1.252  0.067   0.138    0.079    0.079
## 113  F5 =~  Y3 0.216  0.042   0.087    0.032    0.032
## 114  F5 =~  Y4 1.858 -0.324  -0.664   -0.327   -0.327
## 115  F5 =~  Y5 0.059  0.046   0.093    0.044    0.044
## 116  F5 =~  Y6 2.205  0.356   0.731    0.174    0.174
## 117  F5 =~  Y7 0.102  0.036   0.074    0.039    0.039
## 118  F5 =~  Y8 0.362  0.068   0.140    0.074    0.074
## 119  F5 =~  Y9 0.097  0.031   0.063    0.024    0.024
## 120  F5 =~ Y10 0.110  0.029   0.059    0.032    0.032
## 121  F5 =~ Y11 0.012 -0.011  -0.023   -0.008   -0.008
## 122  F5 =~ Y14 0.716  0.283   0.581    0.127    0.127
## 123  F5 =~ Y15 1.382 -0.366  -0.750   -0.297   -0.297
## 124  F5 =~ Y16 0.324  0.081   0.166    0.087    0.087
## 125  F6 =~  Y1 5.305 -0.150  -0.358   -0.146   -0.146
## 126  F6 =~  Y2 0.023 -0.008  -0.018   -0.010   -0.010
## 127  F6 =~  Y3 1.974  0.107   0.256    0.095    0.095
## 128  F6 =~  Y4 7.817 -0.402  -0.961   -0.474   -0.474
## 129  F6 =~  Y5 1.575  0.125   0.298    0.141    0.141
## 130  F6 =~  Y6 9.703  1.195   2.853    0.680    0.680
## 131  F6 =~  Y7 0.430 -0.122  -0.291   -0.154   -0.154
## 132  F6 =~  Y8 0.048 -0.039  -0.093   -0.049   -0.049
## 133  F6 =~  Y9 0.149  0.030   0.070    0.027    0.027
## 134  F6 =~ Y10 1.360  0.081   0.194    0.104    0.104
## 135  F6 =~ Y11 0.188  0.035   0.084    0.030    0.030
## 136  F6 =~ Y12 0.200  0.074   0.176    0.076    0.076
## 137  F6 =~ Y13 0.746  0.096   0.230    0.103    0.103
## 138  Y1 ~~  Y2 0.834  0.205   0.205    0.315    0.315
## 139  Y1 ~~  Y3 1.161  0.360   0.360    0.362    0.362
## 140  Y1 ~~  Y4 0.123  0.072   0.072    0.072    0.072
## 141  Y1 ~~  Y5 2.995  0.307   0.307    0.229    0.229
## 142  Y1 ~~  Y6 0.003  0.015   0.015    0.008    0.008
## 143  Y1 ~~  Y7 0.535 -0.135  -0.135   -0.130   -0.130
## 144  Y1 ~~  Y8 0.044 -0.041  -0.041   -0.033   -0.033
## 145  Y1 ~~  Y9 4.194  0.437   0.437    0.732    0.732
## 146  Y1 ~~ Y10 3.937 -0.355  -0.355   -0.386   -0.386
## 147  Y1 ~~ Y11 2.889 -0.371  -0.371   -0.376   -0.376
## 148  Y1 ~~ Y12 0.087  0.056   0.056    0.075    0.075
## 149  Y1 ~~ Y13 3.397 -0.298  -0.298   -0.248   -0.248
## 150  Y1 ~~ Y14 0.419 -0.222  -0.222   -0.080   -0.080
## 151  Y1 ~~ Y15 0.011 -0.022  -0.022   -0.029   -0.029
## 152  Y1 ~~ Y16 0.620 -0.158  -0.158   -0.124   -0.124
## 153  Y2 ~~  Y3 1.392 -0.227  -0.227   -0.177   -0.177
## 154  Y2 ~~  Y4 0.903  0.158   0.158    0.123    0.123
## 155  Y2 ~~  Y5 3.474 -0.273  -0.273   -0.158   -0.158
## 156  Y2 ~~  Y6 0.050 -0.052  -0.052   -0.020   -0.020
## 157  Y2 ~~  Y7 0.168 -0.063  -0.063   -0.047   -0.047
## 158  Y2 ~~  Y8 3.328  0.298   0.298    0.187    0.187
## 159  Y2 ~~  Y9 2.996 -0.246  -0.246   -0.319   -0.319
## 160  Y2 ~~ Y11 4.213  0.300   0.300    0.236    0.236
## 161  Y2 ~~ Y12 1.393  0.183   0.183    0.190    0.190
## 162  Y2 ~~ Y13 0.107  0.044   0.044    0.028    0.028
## 163  Y2 ~~ Y14 1.032  0.288   0.288    0.080    0.080
## 164  Y2 ~~ Y15 2.525 -0.271  -0.271   -0.283   -0.283
## 165  Y2 ~~ Y16 0.011 -0.017  -0.017   -0.011   -0.011
## 166  Y3 ~~  Y4 0.567 -0.187  -0.187   -0.095   -0.095
## 167  Y3 ~~  Y5 0.610 -0.171  -0.171   -0.065   -0.065
## 168  Y3 ~~  Y6 0.587 -0.264  -0.264   -0.066   -0.066
## 169  Y3 ~~  Y7 0.082  0.066   0.066    0.032    0.032
## 170  Y3 ~~  Y8 0.121 -0.085  -0.085   -0.035   -0.035
## 171  Y3 ~~  Y9 0.669 -0.218  -0.218   -0.184   -0.184
## 172  Y3 ~~ Y10 1.911  0.271   0.271    0.149    0.149
## 173  Y3 ~~ Y12 2.602 -0.375  -0.375   -0.254   -0.254
## 174  Y3 ~~ Y13 4.130  0.407   0.407    0.171    0.171
## 175  Y3 ~~ Y14 0.244  0.209   0.209    0.038    0.038
## 176  Y3 ~~ Y15 1.843  0.345   0.345    0.236    0.236
## 177  Y3 ~~ Y16 0.032  0.045   0.045    0.018    0.018
## 178  Y4 ~~  Y5 2.099  0.669   0.669    0.252    0.252
## 179  Y4 ~~  Y6 1.237 -0.642  -0.642   -0.160   -0.160
## 180  Y4 ~~  Y7 0.970  0.301   0.301    0.146    0.146
## 181  Y4 ~~  Y8 0.356 -0.186  -0.186   -0.076   -0.076
## 182  Y4 ~~  Y9 1.108  0.246   0.246    0.208    0.208
## 183  Y4 ~~ Y10 0.651 -0.182  -0.182   -0.100   -0.100
## 184  Y4 ~~ Y11 0.509 -0.181  -0.181   -0.093   -0.093
## 185  Y4 ~~ Y12 0.529  0.393   0.393    0.266    0.266
## 186  Y4 ~~ Y13 0.492 -0.233  -0.233   -0.098   -0.098
## 187  Y4 ~~ Y14 1.154  0.662   0.662    0.120    0.120
## 188  Y4 ~~ Y15 5.155 -0.957  -0.957   -0.653   -0.653
## 189  Y4 ~~ Y16 0.005 -0.023  -0.023   -0.009   -0.009
## 190  Y5 ~~  Y6 1.183 -0.471  -0.471   -0.087   -0.087
## 191  Y5 ~~  Y7 3.450  0.485   0.485    0.175    0.175
## 192  Y5 ~~  Y8 4.731 -0.593  -0.593   -0.180   -0.180
## 193  Y5 ~~  Y9 0.128 -0.074  -0.074   -0.047   -0.047
## 194  Y5 ~~ Y10 2.485  0.313   0.313    0.128    0.128
## 195  Y5 ~~ Y11 0.266 -0.116  -0.116   -0.044   -0.044
## 196  Y5 ~~ Y12 2.619 -0.674  -0.674   -0.339   -0.339
## 197  Y5 ~~ Y14 0.055  0.119   0.119    0.016    0.016
## 198  Y5 ~~ Y15 1.435  0.388   0.388    0.197    0.197
## 199  Y5 ~~ Y16 3.920  0.552   0.552    0.163    0.163
## 200  Y6 ~~  Y7 1.560 -0.926  -0.926   -0.221   -0.221
## 201  Y6 ~~  Y8 0.428  0.330   0.330    0.066    0.066
## 202  Y6 ~~  Y9 0.439 -0.216  -0.216   -0.090   -0.090
## 203  Y6 ~~ Y10 0.158  0.124   0.124    0.034    0.034
## 204  Y6 ~~ Y11 1.681  0.458   0.458    0.116    0.116
## 205  Y6 ~~ Y12 0.508  0.342   0.342    0.114    0.114
## 206  Y6 ~~ Y13 0.176  0.160   0.160    0.033    0.033
## 207  Y6 ~~ Y15 3.690  1.846   1.846    0.619    0.619
## 208  Y6 ~~ Y16 0.579 -0.349  -0.349   -0.068   -0.068
## 209  Y7 ~~  Y8 1.409  0.349   0.349    0.136    0.136
## 210  Y7 ~~  Y9 0.127 -0.077  -0.077   -0.062   -0.062
## 211  Y7 ~~ Y10 3.403  0.385   0.385    0.202    0.202
## 212  Y7 ~~ Y11 0.058  0.057   0.057    0.028    0.028
## 213  Y7 ~~ Y12 0.122 -0.096  -0.096   -0.062   -0.062
## 214  Y7 ~~ Y13 0.392 -0.148  -0.148   -0.060   -0.060
## 215  Y7 ~~ Y14 0.272  0.346   0.346    0.060    0.060
## 216  Y7 ~~ Y15 0.386 -0.276  -0.276   -0.180   -0.180
## 217  Y7 ~~ Y16 0.235  0.144   0.144    0.054    0.054
## 218  Y8 ~~  Y9 0.038  0.045   0.045    0.030    0.030
## 219  Y8 ~~ Y10 2.386 -0.343  -0.343   -0.152   -0.152
## 220  Y8 ~~ Y11 0.116  0.085   0.085    0.035    0.035
## 221  Y8 ~~ Y12 0.032  0.051   0.051    0.028    0.028
## 222  Y8 ~~ Y13 3.929  0.493   0.493    0.167    0.167
## 223  Y8 ~~ Y14 1.401 -0.674  -0.674   -0.099   -0.099
## 224  Y8 ~~ Y15 2.272 -0.538  -0.538   -0.296   -0.296
## 225  Y9 ~~ Y10 0.262  0.125   0.125    0.114    0.114
## 226  Y9 ~~ Y11 0.187 -0.238  -0.238   -0.204   -0.204
## 227  Y9 ~~ Y12 0.685 -0.187  -0.187   -0.211   -0.211
## 228  Y9 ~~ Y13 0.171  0.079   0.079    0.055    0.055
## 229  Y9 ~~ Y14 0.086  0.117   0.117    0.035    0.035
## 230  Y9 ~~ Y15 0.359  0.144   0.144    0.164    0.164
## 231  Y9 ~~ Y16 0.795  0.209   0.209    0.138    0.138
## 232 Y10 ~~ Y11 0.026 -0.037  -0.037   -0.021   -0.021
## 233 Y10 ~~ Y12 0.018  0.029   0.029    0.021    0.021
## 234 Y10 ~~ Y13 0.313 -0.102  -0.102   -0.046   -0.046
## 235 Y10 ~~ Y14 0.109 -0.127  -0.127   -0.025   -0.025
## 236 Y10 ~~ Y15 0.420  0.150   0.150    0.110    0.110
## 237 Y10 ~~ Y16 0.235 -0.110  -0.110   -0.047   -0.047
## 238 Y11 ~~ Y12 0.722  0.205   0.205    0.140    0.140
## 239 Y11 ~~ Y13 0.161 -0.083  -0.083   -0.035   -0.035
## 240 Y11 ~~ Y14 0.015  0.053   0.053    0.010    0.010
## 241 Y11 ~~ Y15 0.868 -0.244  -0.244   -0.168   -0.168
## 242 Y11 ~~ Y16 0.357 -0.153  -0.153   -0.061   -0.061
## 243 Y12 ~~ Y13 0.150  0.244   0.244    0.137    0.137
## 244 Y12 ~~ Y14 1.679 -0.749  -0.749   -0.181   -0.181
## 245 Y12 ~~ Y15 0.025  0.069   0.069    0.062    0.062
## 246 Y12 ~~ Y16 1.984  0.422   0.422    0.223    0.223
## 247 Y13 ~~ Y14 0.805  0.415   0.415    0.063    0.063
## 248 Y13 ~~ Y15 0.000 -0.003  -0.003   -0.002   -0.002
## 249 Y13 ~~ Y16 3.088 -0.450  -0.450   -0.148   -0.148
## 250 Y14 ~~ Y15 0.307 -0.726  -0.726   -0.177   -0.177
## 251 Y14 ~~ Y16 0.362 -0.327  -0.327   -0.046   -0.046
## 252 Y15 ~~ Y16 1.381  0.518   0.518    0.276    0.276
## 253  F1 ~~  F4 5.096 -0.852  -0.528   -0.528   -0.528
## 254  F1 ~~  F5 2.112 -1.189  -0.903   -0.903   -0.903
## 255  F1 ~~  F6 0.012  0.022   0.028    0.028    0.028
## 256  F2 ~~  F4 0.271 -0.111  -0.069   -0.069   -0.069
## 257  F2 ~~  F5 2.112 -0.763  -0.579   -0.579   -0.579
## 258  F2 ~~  F6 0.012 -0.074  -0.096   -0.096   -0.096
## 259  F3 ~~  F4 8.428  0.549   0.340    0.340    0.340
## 260  F3 ~~  F5 2.112  0.320   0.243    0.243    0.243
## 261  F3 ~~  F6 0.012 -0.072  -0.093   -0.093   -0.093
## 263  F4 ~~  F6 0.141  0.153   0.123    0.123    0.123
## 264  F5 ~~  F6 0.150 -0.260  -0.258   -0.258   -0.258
## 265  F4  ~  F5 0.818  0.196   0.162    0.162    0.162
## 266  F4  ~  F6 8.056  0.360   0.347    0.347    0.347
## 267  F4  ~  F2 0.818  0.258   0.104    0.104    0.104
## 268  F4  ~  F3 8.276  0.734   0.297    0.297    0.297
## 269  F5  ~  F6 1.756  0.214   0.249    0.249    0.249
## 270  F5  ~  F3 2.112  0.495   0.241    0.241    0.241
## 271  F6  ~  F4 0.111  0.035   0.037    0.037    0.037
## 272  F6  ~  F1 0.012  0.030   0.012    0.012    0.012
## 273  F1  ~  F4 5.096 -0.327  -0.810   -0.810   -0.810
## 274  F1  ~  F5 6.992 -0.788  -1.615   -1.615   -1.615
## 275  F1  ~  F6 2.615 -0.407  -0.972   -0.972   -0.972
## 278  F2  ~  F4 0.271 -0.043  -0.106   -0.106   -0.106
## 279  F2  ~  F5 1.770 -0.247  -0.507   -0.507   -0.507
## 280  F2  ~  F6 1.789 -0.324  -0.773   -0.773   -0.773
## 283  F3  ~  F4 8.428  0.211   0.522    0.522    0.522
## 284  F3  ~  F5 8.273  0.314   0.645    0.645    0.645
## 285  F3  ~  F6 7.941  0.399   0.954    0.954    0.954

For this examle, the initial structural model is also the final structural model. Plot the path diagram.

semPlot::semPaths(SEM.2step.initial.structural.model.fit)

5.2 Syntax - Mplus

5.2.1 One-step SEM

TITLE:  JOB ENRICHMENT EXAMPLE;
DATA:   FILE IS "data\JOBENR.dat";
        TYPE IS CORRELATION STDEVIATIONS;
        NOBSERVATIONS IS 114;
VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10;
MODEL:    F1 BY Y1* Y2 Y3 Y4 Y5;
          F2 BY Y7* Y9;
          F3 BY Y6 Y8 Y10;
          F1@1; F2@1;
          Y1 WITH Y2;
          Y3 WITH Y4 Y5;
          Y4 WITH Y5;
          F3 ON F1 F2;
          F1 WITH F2@0;
OUTPUT:   STANDARDIZED(STDYX);
## Mplus VERSION 8.4
## MUTHEN & MUTHEN
## 06/10/2021  12:19 PM
## 
## INPUT INSTRUCTIONS
## 
##   TITLE:  JOB ENRICHMENT EXAMPLE;
##   DATA:   FILE IS "data\JOBENR.dat";
##           TYPE IS CORRELATION STDEVIATIONS;
##           NOBSERVATIONS IS 114;
##   VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10;
##   MODEL:    F1 BY Y1* Y2 Y3 Y4 Y5;
##             F2 BY Y7* Y9;
##             F3 BY Y6 Y8 Y10;
##             F1@1; F2@1;
##             Y1 WITH Y2;
##             Y3 WITH Y4 Y5;
##             Y4 WITH Y5;
##             F3 ON F1 F2;
##             F1 WITH F2@0;
##   OUTPUT:   STANDARDIZED(STDYX);
## 
## 
## 
##    1 ERROR(S) FOUND IN THE INPUT INSTRUCTIONS
## 
## 
## 
## JOB ENRICHMENT EXAMPLE;
## 
## SUMMARY OF ANALYSIS
## 
## Number of groups                                                 1
## Number of observations                                         114
## 
## Number of dependent variables                                   10
## Number of independent variables                                  0
## Number of continuous latent variables                            3
## 
## Observed dependent variables
## 
##   Continuous
##    Y1          Y2          Y3          Y4          Y5          Y6
##    Y7          Y8          Y9          Y10
## 
## Continuous latent variables
##    F1          F2          F3
## 
## 
## Estimator                                                       ML
## Information matrix                                        EXPECTED
## Maximum number of iterations                                  1000
## Convergence criterion                                    0.500D-04
## Maximum number of steepest descent iterations                   20
## 
## Input data file(s)
##   data\JOBENR.dat
## 
## Input data format  FREE
## 
## 
## 
## THE MODEL ESTIMATION TERMINATED NORMALLY
## 
## 
## 
## MODEL FIT INFORMATION
## 
## Number of Free Parameters                       26
## 
## Loglikelihood
## 
##           H0 Value                       -1253.375
##           H1 Value                       -1237.259
## 
## Information Criteria
## 
##           Akaike (AIC)                    2558.751
##           Bayesian (BIC)                  2629.892
##           Sample-Size Adjusted BIC        2547.715
##             (n* = (n + 2) / 24)
## 
## Chi-Square Test of Model Fit
## 
##           Value                             32.232
##           Degrees of Freedom                    29
##           P-Value                           0.3098
## 
## RMSEA (Root Mean Square Error Of Approximation)
## 
##           Estimate                           0.031
##           90 Percent C.I.                    0.000  0.080
##           Probability RMSEA <= .05           0.680
## 
## CFI/TLI
## 
##           CFI                                0.995
##           TLI                                0.992
## 
## Chi-Square Test of Model Fit for the Baseline Model
## 
##           Value                            713.751
##           Degrees of Freedom                    45
##           P-Value                           0.0000
## 
## SRMR (Standardized Root Mean Square Residual)
## 
##           Value                              0.114
## 
## 
## 
## MODEL RESULTS
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 0.803      0.085      9.444      0.000
##     Y2                 0.797      0.075     10.669      0.000
##     Y3                 0.664      0.074      9.018      0.000
##     Y4                 0.493      0.078      6.319      0.000
##     Y5                 0.765      0.083      9.185      0.000
## 
##  F2       BY
##     Y7                 1.216      0.155      7.843      0.000
##     Y9                 0.704      0.117      5.992      0.000
## 
##  F3       BY
##     Y6                 1.000      0.000    999.000    999.000
##     Y8                 0.783      0.091      8.594      0.000
##     Y10                0.929      0.082     11.295      0.000
## 
##  F3       ON
##     F1                 0.624      0.074      8.387      0.000
##     F2                -0.305      0.070     -4.381      0.000
## 
##  F1       WITH
##     F2                 0.000      0.000    999.000    999.000
## 
##  Y1       WITH
##     Y2                 0.008      0.053      0.144      0.885
## 
##  Y3       WITH
##     Y4                 0.194      0.050      3.857      0.000
##     Y5                 0.073      0.050      1.473      0.141
## 
##  Y4       WITH
##     Y5                 0.140      0.054      2.617      0.009
## 
##  Variances
##     F1                 1.000      0.000    999.000    999.000
##     F2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.347      0.075      4.629      0.000
##     Y2                 0.204      0.057      3.555      0.000
##     Y3                 0.310      0.055      5.628      0.000
##     Y4                 0.473      0.069      6.856      0.000
##     Y5                 0.386      0.070      5.513      0.000
##     Y6                 0.163      0.044      3.735      0.000
##     Y7                 0.020      0.321      0.062      0.950
##     Y8                 0.456      0.068      6.737      0.000
##     Y9                 0.661      0.139      4.772      0.000
##     Y10                0.255      0.048      5.313      0.000
##     F3                 0.230      0.060      3.845      0.000
## 
## 
## STANDARDIZED MODEL RESULTS
## 
## 
## STDYX Standardization
## 
##                                                     Two-Tailed
##                     Estimate       S.E.  Est./S.E.    P-Value
## 
##  F1       BY
##     Y1                 0.806      0.049     16.313      0.000
##     Y2                 0.870      0.041     20.999      0.000
##     Y3                 0.766      0.050     15.275      0.000
##     Y4                 0.582      0.071      8.203      0.000
##     Y5                 0.776      0.049     15.856      0.000
## 
##  F2       BY
##     Y7                 0.993      0.108      9.223      0.000
##     Y9                 0.654      0.089      7.362      0.000
## 
##  F3       BY
##     Y6                 0.902      0.029     30.670      0.000
##     Y8                 0.699      0.053     13.171      0.000
##     Y10                0.841      0.036     23.663      0.000
## 
##  F3       ON
##     F1                 0.739      0.054     13.642      0.000
##     F2                -0.362      0.077     -4.674      0.000
## 
##  F1       WITH
##     F2                 0.000      0.000    999.000    999.000
## 
##  Y1       WITH
##     Y2                 0.029      0.195      0.147      0.883
## 
##  Y3       WITH
##     Y4                 0.505      0.080      6.313      0.000
##     Y5                 0.211      0.123      1.718      0.086
## 
##  Y4       WITH
##     Y5                 0.328      0.099      3.327      0.001
## 
##  Variances
##     F1                 1.000      0.000    999.000    999.000
##     F2                 1.000      0.000    999.000    999.000
## 
##  Residual Variances
##     Y1                 0.350      0.080      4.388      0.000
##     Y2                 0.243      0.072      3.369      0.001
##     Y3                 0.413      0.077      5.374      0.000
##     Y4                 0.661      0.083      8.002      0.000
##     Y5                 0.398      0.076      5.235      0.000
##     Y6                 0.186      0.053      3.508      0.000
##     Y7                 0.013      0.214      0.062      0.950
##     Y8                 0.511      0.074      6.880      0.000
##     Y9                 0.572      0.116      4.915      0.000
##     Y10                0.293      0.060      4.903      0.000
##     F3                 0.323      0.077      4.208      0.000
## 
## 
## R-SQUARE
## 
##     Observed                                        Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     Y1                 0.650      0.080      8.157      0.000
##     Y2                 0.757      0.072     10.500      0.000
##     Y3                 0.587      0.077      7.637      0.000
##     Y4                 0.339      0.083      4.102      0.000
##     Y5                 0.602      0.076      7.928      0.000
##     Y6                 0.814      0.053     15.335      0.000
##     Y7                 0.987      0.214      4.612      0.000
##     Y8                 0.489      0.074      6.586      0.000
##     Y9                 0.428      0.116      3.681      0.000
##     Y10                0.707      0.060     11.831      0.000
## 
##      Latent                                         Two-Tailed
##     Variable        Estimate       S.E.  Est./S.E.    P-Value
## 
##     F3                 0.677      0.077      8.808      0.000
## 
## 
## QUALITY OF NUMERICAL RESULTS
## 
##      Condition Number for the Information Matrix              0.302E-02
##        (ratio of smallest to largest eigenvalue)
## 
## 
##      Beginning Time:  12:19:25
##         Ending Time:  12:19:26
##        Elapsed Time:  00:00:01
## 
## 
## 
## MUTHEN & MUTHEN
## 3463 Stoner Ave.
## Los Angeles, CA  90066
## 
## Tel: (310) 391-9971
## Fax: (310) 391-8971
## Web: www.StatModel.com
## Support: Support@StatModel.com
## 
## Copyright (c) 1998-2019 Muthen & Muthen

5.2.2 Two-step SEM process

5.2.2.1 measurement phase

TITLE:  DUNCAN AND STOOLMILLER - INITIAL CONFIRMATORY
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);
TITLE:  DUNCAN AND STOOLMILLER - CONFIRMATORY MODEL 2
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
          Y6 WITH Y14;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);
TITLE:  DUNCAN AND STOOLMILLER - CONFIRMATORY MODEL 3
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
          Y6 WITH Y14;
          Y5 WITH Y13;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);
TITLE:  DUNCAN AND STOOLMILLER - CONFIRMATORY MODEL 4
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
          Y6 WITH Y14;
          Y5 WITH Y13;
          Y3 WITH Y11;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);
TITLE:  DUNCAN AND STOOLMILLER - CONFIRMATORY MODEL 5
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
          Y6 WITH Y14;
          Y5 WITH Y13;
          Y3 WITH Y11;
          Y2 WITH Y10;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);
TITLE:  DUNCAN AND STOOLMILLER - CONFIRMATORY MODEL 6
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F6;
          F2 WITH F3-F6;
          F3 WITH F4-F6;
          F4 WITH F5-F6;
          F5 WITH F6;
          Y6 WITH Y14;
          Y5 WITH Y13;
          Y3 WITH Y11;
          Y2 WITH Y10;
          Y8 WITH Y16;
OUTPUT:  STANDARDIZED(STDYX) MODINDICES(3.84);

5.2.2.2 structural phase

TITLE:  DUNCAN AND STOOLMILLER - INITIAL STRUCTURAL
DATA:   FILE IS "data\DANDS.dat";
        TYPE IS COVARIANCE;
        NOBSERVATIONS ARE 84;
VARIABLE: NAMES ARE Y1-Y16;
MODEL:    F1 BY Y1* Y2 Y3;
          F2 BY Y4* Y5;
          F3 BY Y6* Y7 Y8;
          F4 BY Y9 Y10 Y11;
          F5 BY Y12 Y13;
          F6 BY Y14 Y15 Y16;
          F1@1; F2@1; F3@1;
          F1 WITH F2-F3;
          F2 WITH F3;
          Y6 WITH Y14;
          Y5 WITH Y13;
          Y3 WITH Y11;
          Y2 WITH Y10;
          Y8 WITH Y16;
          F4 ON F1;
          F5 ON F1 F2 F4;
          F6 ON F2 F3 F5;
MODEL INDIRECT: F5 IND F4 F1;
                F6 IND F5 F4 F1;
                F6 IND F5 F1;
                F6 IND F5 F2;
                F6 IND F5 F4;
OUTPUT:  STANDARDIZED(STDYX) RESIDUAL MODINDICES(3.84);